Parameterization for ATLAS EMEC

Yan Jiang SLAC ATLAS Forum 13 Dec 2006

Why parameterization?

Release	CPU time per event (kSI2K)						
	B4 (jets)	H(130) ->4l	min bias	susy	Z->ee	Z-> mumu	Z-> tautau
12.0.3	765.06	776.72	263.35	921.64	949.58	736.68	668.64

- Full simulation time increases almost **linearly** with the energy.
- Parameterization: generating the energy profile of the shower rather than tracking every secondary particles.

How to parameterize? - longitudinal

The mean longitudinal profile of a shower is described by a gamma function

$$< \frac{1}{E} \frac{dE(t)}{dt} >= f(t) = \frac{(\beta t)^{\alpha - 1} \beta e^{-\beta t}}{\Gamma(\alpha)}$$

- t the shower depth in units of radiation length
- T= $(\alpha-1)/\beta$ the depth of shower maximum.

How to parameterize? - longitudinal

- T and α are dependent on shower energy and the sampling frequency, which is related to the direction of the incident particle.
- T and α are calculated at each point (energy, direction). And

$$dE(t) = E \int_{t_{i-1}}^{t_j} \frac{(\beta_i t)^{\alpha_i - 1} \beta_i e^{-\beta_i t}}{\Gamma(\alpha_i)} dt$$

How to parameterize? - radial

- Also described by gamma function. But it consists of two parts, core and tail.
- r is in the unit of Molière radius

$$\left\langle \frac{1}{dE(t)} \frac{dE(r,t)}{dr} \right\rangle = p^r g_1(r) + (1 - p^r) g_2(r)$$
$$g_i(r) = \frac{1}{2\lambda_i^r} \left(\frac{r}{\lambda_i^r}\right)^{\alpha_i^r/2 - 1} \frac{e^{-\sqrt{r/\lambda_i^r}}}{\Gamma(\alpha_i^r)}$$

$$\lambda_i^r = \lambda_i^r(t); \ \alpha_i^r = \alpha_i^r(t);$$

Barberio and Straessner, ATL-Com-Phys-2004-015

Yan Jiang: SLAC ATLAS Forum

Shower parameters - longitudinal

In α and In T are Gaussian variables.
Thus we look into the logarithm rather than α and T.

Shower parameters - longitudinal

- At each point, generate a sample of 1000 showers by full simulation.
- For each shower, calculate the moments. Get T and α from first and second moments.

$$Z_{n} = \int_{m}^{\infty} f(t)t^{n} dt = \beta^{-n} \Gamma(\alpha + n) / \Gamma(\alpha), \ T = \frac{2Z_{1}^{2} - Z_{2}}{Z_{1}}, \ \alpha = \frac{Z_{1}^{2}}{Z_{2} - Z_{1}^{2}}$$

 Fit the distribution of ln(T) and ln(α) as Gaussian to get mean value and variance.

Shower parameters - longitudinal Unfortunately, $\ln(T)$ and $\ln(\alpha)$ are not independent. We have to deal with another variable, the correlation between $\ln(T)$ and $\ln(\alpha)$. $\rho = \rho(\ln T, \ln \alpha) = \frac{\left\langle \left(\ln \alpha - \left\langle \ln \alpha \right\rangle\right) \left(\ln T - \left\langle \ln T \right\rangle\right) \right\rangle}{\sqrt{\left(\left\langle \ln \alpha^2 \right\rangle - \left\langle \ln \alpha \right\rangle^2\right) \left(\left\langle \ln T^2 \right\rangle - \left\langle \ln T \right\rangle^2\right)}}$ \square For each parameterized shower, T and α are calculated as ulated as $\begin{pmatrix} \ln T_i \\ \ln \alpha_i \end{pmatrix} = \begin{pmatrix} \langle \ln T \rangle \\ \langle \ln \alpha \rangle \end{pmatrix} + \begin{pmatrix} \sigma_{\ln T} & 0 \\ 0 & \sigma_{\ln \alpha} \end{pmatrix} \begin{pmatrix} \sqrt{\frac{1+\rho}{2}} & \sqrt{\frac{1-\rho}{2}} \\ \sqrt{\frac{1-\rho}{2}} & \sqrt{\frac{1+\rho}{2}} \end{pmatrix} \begin{pmatrix} n_1 \\ n_2 \end{pmatrix}$

where n₁ and n₂ are normally distributed random numbers
Deposit energy to every spot of detectors as the profile shows to get a parameterized shower.

Parameters as function of $\ln(E/E_c)$ and η

- Use logarithm of shower energy scaled by critical energy and pseudorapidity of incident particle as variables in the ansatz for <lnT>, <ln α>, σ(ln T), σ(ln α) and ρ.
- Critical energy is from TDR: 0.011122GeV
- Pseudorapidity $\eta = -\ln(\tan(\arctan(X/3720)/2))$
- Challenge in parameterization
 - 2-dimensional function
 - Jump at **η**=2.5

$<\ln T > - \eta$ dependence

$$<\ln T>=(c_0+c_1\eta+c_2\eta^2)(1-s(\eta))+[c_4+c_1(\eta-c_3)+c_2(\eta-c_3)^2]s(\eta)$$

T> - energy dependence

 $\overline{<\ln T} >= d_1 + d_2 \ln(E/E_c)$

• 2-dimensional function could be $< \ln T >= (c_0 + c_1 \eta + c_2 \eta^2)(1 - s(\eta)) + [c_4 + c_1 (\eta - c_3) + c_2 (\eta - c_3)^2] s(\eta) + c_5 \ln(E/E_c)$

$\sigma(\ln T) - \eta$ dependence

 $s(\eta) = \frac{1}{1 + \exp(-(\eta - 2.5)/0.01)} \quad \sigma(\ln T) = (c_0 + c_1\eta)(1 - s(\eta)) + (c_2 + c_1\eta)s(\eta)$

Unfortunately, unlike in ln(T), the slope of $\sigma(\ln T)$ varies greatly at different energy, i.e. c_1 is dependent on ln(E/E_c)

13 Dec 06

Yan Jiang: SLAC ATLAS Forum

$\sigma(\ln T)$ - energy dependence

 $\sigma(\ln T) = d_1 + d_2 \ln(E/E_c) + d_3 \left[\ln(E/E_c)\right]^2$

The coefficients in this formula also vary greatly at different $\eta!$ 2-dimensional function could be $\sigma(\ln T) = \left[c_0 + (c_1 + c_2 \ln(E/E_c) + c_3 (\ln(E/E_c))^2) \eta + c_4 \ln(E/E_c) + c_5 (\ln(E/E_c))^2 \right]$ $(1-s(\eta)) + (c_6 + (c_1 + c_2 \ln(E/E_c)) + c_3 (\ln(E/E_c))^2)\eta + c_7 \ln(E/E_c) + c_8 (\ln(E/E_c))^2)s(\eta)$ 13 Dec 06 Yan Jiang: SLAC ATLAS Forum 16

2D fitting

- We make 2D fits of each quantity as a function of E and eta, using the formula on the previous pages.
- There are 6 parameters in $<\ln T >$ and $<\ln \alpha >$ fits and 9 parameters in $\sigma(\ln \alpha)$ and $\sigma(\ln T)$ fits.
- We show the quality of the fit by looking at 1D slices.

ρ – still a problem

Not satisfactorily solved. We leave it as a constant now.

Yan Jiang: SLAC ATLAS Forum

Plots of parameterized shower

Red and green lines are from parameterized showers using old and new parameters. Only energy in sensitive detectors are recorded here!

Plots of parameterized shower

E=50GeV, η=2.95
Not so good now. Maybe due to tuning

Conclusions

- Good approximation using new fits of ln T and ln α.
- Further validation by users.
- Possible improvements
 - Find a reasonable way to fit ρ ;
 - Better description of radial profile;
 - Consider the difference in longitudinal profiles of full and parameterized showers is well-behaving, a factor may be found to correct the longitudinal ansatz.