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Why Taus?
Provide Early 
Discovery Potential

t + t -> W + b + H± + b
H± -> τ + ν

H/A -> t + t
t->W + b, W->τ + ν

H/A -> τ + τ

Standard Model 
Calibration

W -> τ + ν
Z -> τ + τ
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Long Term Project Goal
Studies of electrons show small variations in efficiencies 
between physics channels

Do we see the same thing in taus?
Can we understand & model these differences?
Non-physical differences lead to bug fixes

Tau reconstruction & identification efficiency is hard to 
measure

Subtle differences from other jets
Messy events: t + t -> τ + 3jets

Goal:
Assume MC models gross differences between channels
Use MC calibrated to early data on ‘clean’ channels 
(ex: Z-> τ + τ) to project efficiencies for ‘intractable’ channels
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Anatomy of a Tau
Properties:

Mass =  1777 MeV
Cτ = 87.11 μm

Leptonic Decays
τ-> ν + ν + l (~35%)
Hard to separate from 
prompt l
Veto all e,μ (for now)

Semi-Hadronic Decays
τ -> ν + h± + nπ0 (~50%)
τ -> ν + 3h± + nπ0 (~15%)

Tau Jets are highly 
collimated

τ decay

π0

π+

π-

π+

τ jet
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Solenoid Forward Calorimeters

Muon Detectors Electromagnetic Calorimeters

EndCap Toroid

Barrel Toroid Inner Detector Hadronic Calorimeters Shielding

ATLAS layoutATLAS layout

Fabien Tarrade Tau06
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ATLAS trackingATLAS tracking

Resolution :
σ(PT)/PT = 0.05% PT (GeV) ⊕ 1%

Tracking in range |η|< 2.5

ID inside 2 Tesla solenoid field

Precision Tracking :
Pixel detector, Semiconductor Tracker (SCT)

Continuous Tracking for pattern 
recognition and e id
Transition Radiation Tracker (TRT)

InnerInner DetectorsDetectors ((ID)ID) ::

MagneticMagnetic Field  :Field  :

Inner Detector

Pixel Detectors

Transition 
Radiation
Tracker

Barrel Silicon Strip
Detector

Forward Silicon
SripsDetector

F. Tarrade Tau06
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Electromagnetic : (in |η|<3.2)
σE/E = 10%/√E(GeV) ⊕ 0.245/E(GeV) ⊕ 0.7%

(low luminosity)

Hadronic : ( in |η|<3)
σE/E = 50%/√E(GeV) ⊕ 3.0 %

Hadronic Tile
Calorimeter

EM Accordion
Calorimeters

Hadronic LAr EndCap
Calorimeters

Forward LAr
Calorimeters

η = 1.475
η = 1.8
η = 3.2

η = 2.5

CalorimeterCalorimeter ::

η-Strips

LayerLayer GranularityGranularity (ΔηxΔϕ)
Tile0
Tile1
Tile2

0.1 x 0.10.1 x 0.1
0.1 x 0.10.1 x 0.1
0.2 x 0.10.2 x 0.1

LayerLayer GranularityGranularity (ΔηxΔϕ)

Pre-sampler

Strips

Middle

Back

0.025 x 0.10.025 x 0.1

0.003 x 0.10.003 x 0.1

0.025 x 0.0250.025 x 0.025

0.05 x 0.0250.05 x 0.025

ATLAS ATLAS calorimetrycalorimetry

Back
Middle

η

φ

η-Strips

F. Tarrade Tau06
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Overview of Tau1p3p
New ‘Track-Based’ Algorithm

Written by E. Richter-Was et 
al
Supplements/Replaces 
TauRec
Designed for τ jets w/ Et < 
150 GeV

Seeded by tracks in the inner 
detector

Leverages resolution 
advantage in inner detector 
for more accurate energy 
scale

Status
Algorithm finished
Athena-Aware now available
Cuts need to be fine-tuned
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tio

n
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)  
 

pT (GeV)

inner detector

hadronic calorimeters

pions
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Tau1p3p Reconstruction
Start with a qualified track

Min. silicon, straw 
chamber hits
Cuts on

Impact Parameter
χ2 track fit reconstruction

Lepton veto (not 
implemented yet)

A Track is a leading 
hadronic track if

Pt > 10 Gev
0 or 2 qualified tracks w/ 
Pt > 2 GeV within 
ΔR < .4

Set of 1 or 3 tracks forms 
tau candidate
Energy scale = Eflow

Cone Separation between
nπ0 bary-center & π±

E. Richter-Was et al, ATL-COM-PHYS-2004-030
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Energy Flow (Eflow)

ET
eflow= ET

emcl +ET
neuEM + Σ pT

track + Σ resET
chrgEM + resET

neuEM

E/G Clusters

• >0.2 GeV

•Not associated 
with a track

For ΔR < .2:

Any other non-
associated energy Parameterized corrections

Pt of seed tracks

•Leverages 
advantage of 
higher resolution in 
tracker

F. Tarrade Tau06
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Eflow v Ecalorimeter

Ecalo/Etruth Ecalo/Etruth

Eflow/Etruth Eflow/Etruth

E. Richter-Was et al, ATL-COM-PHYS-2005-005
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Reconstruction Efficiency
Reconstructed + Truth

True Taus

True
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Tau Identification
Discriminating Variables

Rem – electromagnetic radius
Nstrips – number of strips above a threshold
Wstrips – weighted variance in eta of energy in strips
ΔE12 – Difference in energy deposited with ΔR < .1 
versus ΔR < .2
Ehalo – Energy deposited within .2 < ΔR < .4
Charge – enforce consistency of ±e

Combine with favorite multivariate analysis
ANN
PDERS
Cut-based
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Rem – ElectroMagnetic Radius
REM=Σ (ET

EM ×ΔR) / Σ ET
EM
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Isolation Fraction (ΔE12)

ΔET
12=Σ (ET

EM+ET
Had) 0.1<ΔR<0.2 / Σ(ET

EM+ET
Had)
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Charge
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Identification Efficiency
Reconstructed + Identified + Truth

Reconstructed + Truth
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Project Status
Truth Matching for tau1p3p implemented

Crude; problems bypassed with ‘common sense 
clubbing’

Efficiency plots made
Need to understand (probably unphysical) discrepancies 
between channels
Rejection/Fake rates to be plotted

Machinery to read CBNT’s created
Probably reinvented the wheel
CBNT documentation sparse
CBNT’s should be abandoned if possible (start over)
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Summary
Taus are painful, but worth it

Hard to reconstruct, identify
Isolation best criteria
Background noise will make isolation difficult

Discovery potential for supersymmetric Higgs 
sector

Tau1p3p is a new algorithm
Track based
Improved energy-scale resolution, accuracy

Much left to do
Need to find & understand differences between 
physics channels


