Tau Reconstruction & Identification

An Overview of the Tau1p3p algorithm

Douglas Applegate Slac ATLAS Forum 12 December, 2006

Overview

- Why taus?
- Detector components & resolution
- Tau1p3p algorithm reconstruction
- Tau identification
- Reconstruction & ID efficiencies
- Summary & outlook

Why Taus?

- Provide Early Discovery Potential
 - $t + t \to W + b + H^{\pm} + b$ • $H^{\pm} \to \tau + \nu$
 - $H/A \rightarrow t + t$
 - \Box t->W + b, W-> τ + ν
 - $H/A \rightarrow \tau + \tau$
- Standard Model Calibration
 - $W \rightarrow \tau + \nu$
 - Z -> τ + τ

Long Term Project Goal

- Studies of electrons show small variations in efficiencies between physics channels
 - Do we see the same thing in taus?
 - Can we understand & model these differences?
 - Non-physical differences lead to bug fixes
- Tau reconstruction & identification efficiency is hard to measure
 - Subtle differences from other jets
 - Messy events: $t + t \rightarrow \tau + 3jets$
- Goal:
 - Assume MC models gross differences between channels
 - Use MC calibrated to early data on `clean' channels (ex: Z-> τ + τ) to project efficiencies for `intractable' channels

Anatomy of a Tau

Properties:

- Mass = 1777 MeV
- CT = 87.11 μm
- Leptonic Decays
 - $\tau -> \nu + \nu + \ell$ (~35%)
 - Hard to separate from prompt *l*
 - Veto all e,µ (for now)
- Semi-Hadronic Decays
 - $\tau \to v + h^{\pm} + n\pi^0$ (~50%)
 - $\tau \to v + 3h^{\pm} + n\pi^0 (\sim 15\%)$

Tau Jets are highly collimated

Fabien Tarrade Tau06

ATLAS tracking

Inner Detector

7

Inner Detectors (ID) :

- Precision Tracking : Pixel detector, Semiconductor Tracker (SCT)
- Continuous Tracking for pattern recognition and e id Transition Radiation Tracker (TRT)
- Resolution : $\sigma(P_T)/P_T = 0.05\% P_T (GeV) \oplus 1\%$
- Tracking in range $|\eta| < 2.5$

Magnetic Field :

• ID inside 2 Tesla solenoid field

F. Tarrade Tau06

ATLAS calorimetry

η-Strips

Calorimeter :

• Electromagnetic : (in $|\eta| < 3.2$) $\sigma_E = 10\% / \sqrt{E(GeV)} \oplus 0.245 / E(GeV) \oplus 0.7\%$ (low luminosity)

Layer	Granularity $(\Delta \eta x \Delta \phi)$
Pre-sampler	0.025 x 0.1
Strips	0.003 x 0.1
Middle	0.025 x 0.025
Back	0.05 x 0.025

 Hadronic : (in |η|<3) σ_E/E = 50%/√E(GeV) ⊕ 3.0 %

Layer	Granularity $(\Delta \eta x \Delta \phi)$
Tile0	0.1 x 0.1
Tile1	0.1 x 0.1
Tile2	0.2 x 0.1

F. Tarrade Tau06

Overview of Tau1p3p

- New 'Track-Based' Algorithm
 - Written by E. Richter-Was et al
 - Supplements/Replaces TauRec
 - Designed for τ jets w/ E_t < 150 GeV
- Seeded by tracks in the inner detector
 - Leverages resolution advantage in inner detector for more accurate energy scale
- Status
 - Algorithm finished
 - Athena-Aware now available
 - Cuts need to be fine-tuned

Energy Flow (
$$E_{flow}$$
)

11

Eflow v Ecalorimeter

Reconstructed + Truth

True Taus

Reconstruction Efficiency

Tau Identification

Discriminating Variables

- R^{em} electromagnetic radius
- N^{strips} number of strips above a threshold
- W^{strips} weighted variance in eta of energy in strips
- ΔE^{12} Difference in energy deposited with $\Delta R < .1$ versus $\Delta R < .2$
- E^{halo} Energy deposited within .2 < ΔR < .4
- Charge enforce consistency of ±e
- Combine with favorite multivariate analysis
 - ANN
 - PDERS
 - Cut-based

R_{em} – ElectroMagnetic Radius

Reconstructed + Identified + Truth

Reconstructed + Truth

Identification Efficiency

Project Status

Truth Matching for tau1p3p implemented

- Crude; problems bypassed with `common sense clubbing'
- Efficiency plots made
 - Need to understand (probably unphysical) discrepancies between channels
 - Rejection/Fake rates to be plotted
- Machinery to read CBNT's created
 - Probably reinvented the wheel
 - CBNT documentation sparse
 - CBNT's should be abandoned if possible (start over)

Summary

Taus are painful, but worth it

- Hard to reconstruct, identify
 - Isolation best criteria
 - Background noise will make isolation difficult
- Discovery potential for supersymmetric Higgs sector

Tau1p3p is a new algorithm

- Track based
- Improved energy-scale resolution, accuracy
- Much left to do
 - Need to find & understand differences between physics channels