High-precision $\alpha_{\rm S}(m_{\rm Z}^2)$ determinations from future FCC-ee $e^+e^- \to {\rm hadrons}$ data below the Z peak

Letter of Interest submitted to Snowmass 2021

Andrea Banfi¹, Alain Blondel², David d'Enterria³, Patrick Janot³, Adam Kardos⁴, Stefan Kluth⁵, Bogdan Malaescu², Pier Francesco Monni³, Gábor Somogyi⁴, Zoltán Szőr⁶, Zoltán Trócsányi⁷, Zoltán Tulipánt⁴, Andrii Verbytskyi⁵, and Giulia Zanderighi⁵

¹University of Sussex, Brighton, BN1 9RH, United Kingdom
²LPNHE, Sorbonne Université, 4 Place Jussieu, 75252 Paris, France
³CERN, 1 Esplanade des Particules, CH-1217 Meyrin, Switzerland
⁴University of Debrecen, 4010 Debrecen, Hungary
⁵Max Planck Institute for Physics, Föhringer Ring 6, D-80805 Munich, Germany
⁶Johannes Gutenberg Universität, D-55099 Mainz, Germany
⁷Institute for Theoretical Physics, Eötvös Loránd Univ., Pázmány Péter 1/A, H-1117 Budapest, Hungary

Thematic Areas:

(EF01)	EW Physics: Higgs Boson properties and couplings
(EF02)	EW Physics: Higgs Boson as a portal to new physics
(EF03)	EW Physics: Heavy flavor and top quark physics
(EF04)	EW Physics: EW Precision Physics and constraining new physics
(EF05)	QCD and strong interactions: Precision QCD
(EF06)	QCD and strong interactions:Hadronic structure and forward QCD
(EF07)	QCD and strong interactions: Heavy Ions
(EF08)	BSM: Model specific explorations
(EF09)	BSM: More general explorations
(EF10)	BSM: Dark Matter at colliders

Contact Information: Andrii Verbytskyi [andrii.verbytskyi@mpp.mpg.de]

The huge amount of data expected to be collected at the FCC-ee [1] offers several possibilities for unprecedentedly precise measurements of the strong coupling constant in the very "clean" environment of e⁺e⁻ collisions [2]. The highest precision of the measurements can be assured not only thanks to the sheer amount of high-quality data, but also to the wide range of center-of-mass energies at which the data sets will be collected.

In the scope of the FCC-ee CDR [1], two mutually non-exclusive methods exist for an extension of e^+e^- data collection below the Z peak [3]. The first one is to organize a dedicated data taking from 30 to 90 GeV center-of-mass energies in such a way such as to record $10^9 \ e^+e^- \rightarrow$ hadrons events using several intermediate beam energies. The second one consists in using the $e^+e^- \rightarrow \gamma$ + hadrons radiative events recorded during the foreseen data taking at and around the Z pole.

Recently, the data taken below the Z peak in multiple experiments played a crucial role in performing precise $\alpha_{\rm S}(m_{\rm Z}^2)$ extractions using event shape observables [4, 5, 6] and jet rates [7, 8], and naturally complemented the measurements obtained at higher center-of-mass energies. Therefore, it is expected that, by combining the measurements below and above the Z peak within the same experiment, it will be possible to reach per-mil (experimental) precision in the $\alpha_{\rm S}(m_{\rm Z}^2)$ extraction, essentially eliminating experimental uncertainties.

The data collected at energies below the Z peak will provide input for the $\alpha_{\rm S}(m_{\rm Z}^2)$ extractions from the global electroweak fits [9], and complement the datasets for other methods, e.g. $\alpha_{\rm S}(m_{\rm Z}^2)$

from hadronic τ decays [10]. The same data will also be crucial for a deeper understanding and improved modeling of non-perturbative effects, which are more prominent at lower center-of-mass energies.

The importance of the run conditions and the detector design for both methods of data taking at lower center-of-mass energies than the Z pole will be evaluated, in particular regarding: i) the overall angular acceptance of the detector; ii) the possible Particle Identification for flavour (b/c/other) identification of the jets; iii) the availability of hadron $(\pi/K/p)$ identification. The resulting detector requirements and optimal run conditions will be spelled out. The opportunities brought in by dedicated intermediate-energy runs for improving the detector calibration, validation of the Monte Carlo event simulations and the event reconstruction will also be studied. This study might result in a more detailed running proposal.

References

- [1] FCC collaboration, A. Abada et al., FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2, Eur. Phys. J. ST 228 (2019) 261–623.
- [2] FCC collaboration, A. Abada et al., FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1, Eur. Phys. J. C 79 (2019) 474.
- [3] Andrii Verbytskyi, "Perspective of the α_s extraction from the FCC data." Talk given at the 3rd FCC Physics and Experiments Workshop https://indico.cern.ch/event/838435/contributions/3635706/attachments/ 1969408/3275588/Genf2020_Andrii_Verbytskyi.pdf, January, 2020.
- [4] T. Gehrmann, M. Jaquier and G. Luisoni, *Hadronization effects in event shape moments*, Eur. Phys. J. C67 (2010) 57–72, [0911.2422].
- [5] A. Hoang et al., Precise determination of α_s from the C-parameter distribution, Phys. Rev. **D91** (2015) 094018, [1501.04111].
- [6] A. Kardos et al., Precise determination of $\alpha_S(M_Z)$ from a global fit of energy-energy correlation to NNLO+NNLL predictions, Eur. Phys. J. C 78 (2018) 498, [1804.09146].
- [7] JADE collaboration, J. Schieck et al., Measurement of the strong coupling α_S from the three-jet rate in e^+e^- annihilation using JADE data, Eur. Phys. J. C73 (2013) 2332, [1205.3714].
- [8] A. Verbytskyi et al., High precision determination of α_s from a global fit of jet rates, JHEP **08** (2019) 129, [1902.08158].
- [9] GFITTER GROUP collaboration, M. Baak et al., The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J. C74 (2014) 3046, [1407.3792].
- [10] D. Boito, M. Golterman, A. Keshavarzi, K. Maltman, D. Nomura, S. Peris et al., Strong coupling from $e^+e^- \rightarrow hadrons\ below\ charm,\ Phys.\ Rev.\ D\ 98\ (2018)\ 074030,\ [1805.08176].$