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The huge amount of data expected to be collected at the FCC-ee [1] offers several possibilities
for unprecedentedly precise measurements of the strong coupling constant in the very “clean”
environment of e+e− collisions [2]. The highest precision of the measurements can be assured not
only thanks to the sheer amount of high-quality data, but also to the wide range of center-of-mass
energies at which the data sets will be collected.

In the scope of the FCC-ee CDR [1], two mutually non-exclusive methods exist for an extension
of e+e− data collection below the Z peak [3]. The first one is to organize a dedicated data taking
from 30 to 90 GeV center-of-mass energies in such a way such as to record 109 e+e− → hadrons
events using several intermediate beam energies. The second one consists in using the e+e− →
γ + hadrons radiative events recorded during the foreseen data taking at and around the Z pole.

Recently, the data taken below the Z peak in multiple experiments played a crucial role in
performing precise αS(m

2
Z) extractions using event shape observables [4, 5, 6] and jet rates [7, 8], and

naturally complemented the measurements obtained at higher center-of-mass energies. Therefore,
it is expected that, by combining the measurements below and above the Z peak within the same
experiment, it will be possible to reach per-mil (experimental) precision in the αS(m

2
Z) extraction,

essentially eliminating experimental uncertainties.

The data collected at energies below the Z peak will provide input for the αS(m
2
Z) extractions

from the global electroweak fits [9], and complement the datasets for other methods, e.g. αS(m
2
Z)
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from hadronic τ decays [10]. The same data will also be crucial for a deeper understanding and
improved modeling of non-perturbative effects, which are more prominent at lower center-of-mass
energies.

The importance of the run conditions and the detector design for both methods of data taking
at lower center-of-mass energies than the Z pole will be evaluated, in particular regarding: i)
the overall angular acceptance of the detector; ii) the possible Particle Identification for flavour
(b/c/other) identification of the jets; iii) the availability of hadron (π/K/p) identification. The
resulting detector requirements and optimal run conditions will be spelled out. The opportunities
brought in by dedicated intermediate-energy runs for improving the detector calibration, validation
of the Monte Carlo event simulations and the event reconstruction will also be studied. This study
might result in a more detailed running proposal.
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