Photo Detection Efficiency of SPAD

HighRR Biweekly Seminar 11-11-2020

Basic Terms

Impact Ionization

- Process of acceleration of free charge carrier with enough kinetic energy creation of e-h pairs by ionization process.
- Geiger mode operation multiplication of e-h pairs goes infinite.

Basic Terms

=>

- If electrons or holes collide with equal effective masses -
 - According to law of conservation of momentum,

Initial Momentum
$$k_0 = k_1 + k_e + k_h$$
 Final Momentum
 $\hbar^2 k_0^2 / 2m^* = E_i = E_g + \hbar^2 k_1^2 / 2m^* + \hbar^2 k_e^2 / 2m^* + \hbar^2 k_h^2 / 2m^*$

Momentum of secondary charge carriers are equal after collision ; $k_1 = k_e = k_h = \frac{1}{3} k_0$

• Carrier energy > Threshold energy; No. of carriers (n) ~ $exp(-E_i/k_BT_e)$.

Basic Terms

• From energy balance equation,

 $eFv_d \tau = 3/2 k_B(T_e-T) \approx k_B T_e$

- At high fields, drift velocity(v_d) = constant and with constant relaxation time (τ); carrier mean free path, $\lambda = v_d \tau$.
- Ionization rate or coefficient can be determined by $\alpha = (1/n) dn/dx$;

 $\alpha \propto \exp(-E_i/k_B T_e) = \exp(-E_i/eF\lambda)$

=> Average no. of e-h pairs produced by single carrier per unit length.

What is SPAD?

• SINGLE PHOTON AVALANCHE DIODE

- Reverse-biased p-n junction
- $V_{b} > V_{bd}$; Geiger-mode operation
- High electric field (>3×10⁵ V/cm)
- Self sustained avalanche
- Quenching with resistor in series.

Photo Detection Efficiency

PDE
$$(\lambda) = (1-R(\lambda)) \int_{z_p}^{z_n} \alpha(\lambda) e^{-\alpha(\lambda)z} P_t(z) dz + \eta_{e,ph}(\lambda, z_p) P_e(z_p) + \eta_{h,ph}(\lambda, z_n) P_h(z_n)$$

- R(λ) = Reflectivity ; α(λ) = Absorption Coefficient ;
- η = Quantum Efficiency , **z** = Depth;
- **P**_t = Total Triggering Probability;
- **P**_e = Electron Triggering Probability;
- **P**_h = Hole Triggering Probability

6

PDE Modelling

Doping Profile

Electric Field Distribution

IV Characteristics

- TCAD Breakdown Model : Ionization integral with carrier analysis
- Breakdown Voltage = 8V

Ionization Integral

TCAD Avalanche Models

Models	Temperature	Electric Field (Vcm ⁻¹)
Van Overstraeten	300K	1.75×10 ⁵ -6×10 ⁵
Okuto-Crowell	300K	10 ⁵ -10 ⁶
Lackner	300K	$2 \times 10^5 - 6 \times 10^5$
UniBo	300 - 675K	4×10 ⁴ - 5×10 ⁵
UniBo2	300 - 773K	$4 \times 10^4 - 5 \times 10^5$

EMPIRICAL MODEL(USED)

Comparison of Avalanche Models

Depth(um)

Comparison of Avalanche Models

Depth(um)

Avalanche Triggering Probability

$$dP_{e}/dz = (1 - P_{e}) \alpha_{e}[P_{e} + P_{h} - P_{e}P_{h}]$$

$$dP_{h}/dz = -(1 - P_{h}) \alpha_{h}[P_{e} + P_{h} - P_{e}P_{h}]$$

$$P_{t} = P_{e} + P_{h} - P_{e}P_{h}$$
Boundary Conditions : $P_{e}(Z_{n}) = 0$

 $\mathsf{P}_{\mathsf{h}}(\mathsf{Z}_{\mathsf{p}})=\mathbf{0}$

$\boldsymbol{\alpha}_{e}^{}$ is larger than $\boldsymbol{\alpha}_{h}^{}$.

Ionization Coefficient

Avalanche Triggering Probability

Fresnel Reflection Coefficient

At normal incidence, r = (n1-n2) / (n1+n2)

- If n1<n2, r = -ve
 - \circ Phase change π or 180°
 - External reflection
 - Destructive interference

- Phase change 0°
- Internal reflection
- Constructive interference

Reflectance, $R = r^2 = [(n1-n2) / (n1+n2)]^2$

Transfer Matrix Method

Transfer Matrix Method

Reflectance+Absorption+Transmission = 100%

Anti-Reflection Coating

ARC reduces the reflected light intensity

- n1 < n2 < n3; Phase change = π
- B travels twice of A
- Phase diff. between A & B : $n_2 k(2d)$

How to adjust the thickness of ARC?

• ARC thickness, d should be $\lambda/4n_2$

Effect of ARC

Tuned ARC at 420 nm

24

Absorption Coefficient $(\alpha(\lambda))$ of Si

 Strongly depends on wavelength.

•
$$\alpha(\lambda) = 4\pi k/\lambda$$

Quantum Efficiency

Quantum Efficiency

Photo Detection Probability

Conclusions

- Anti-reflection coating can be adjusted by $\lambda/4n_2$.
- Reflectivity ~ 1% at 420 nm of wavelength.
- PDP = 28% for $1V_{ex}$; 48% for $3V_{ex}$ at 420 nm.
- PDP increases with the increase of excess voltage.