The DUNE experiment pushing the limits in <u>cletector technologies</u>

DEEP UNDERGROUND. NEUTRINO EXPERIMENT

Eldwan Brianne for the DUNE Collaboration 24th February 2021

JGU

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Contents of this talk.

- The neutrino mystery
- The Deep Underground Neutrino Experiment
- The physics goals of DUNE
- Pushing the limits in terms of technology
 - The Far Detector
 - The Near Detector
- Summary

Contents of this talk.

The neutrino mystery ullet

- The Deep Underground Neutrino Experiment
- The physics goals of DUNE
- Pushing the limits in terms of technology
 - The Far Detector
 - The Near Detector
- Summary

Neutrinos.

The invisible and mysterious particle

- Neutrino oscillations hypothesised in 1957 Mobel prize 2015
- Described by the PMNS Matrix (similar to CKM) where the flavour eigenstates are a superposition of mass eigenstates
 - Parametrised by angles (θ_{12} , θ_{23} , θ_{13}) and a phase (δ_{cp})
- The remaining questions
 - Neutrino mass hierarchy
 - Are the states $v_1 \& v_2$ lighter or heavier than v_3 ?
 - CP violation
 - $\delta_{cp} \neq 0$ or π ? \blacksquare Neutrino / Anti-neutrino asymmetry
 - Octant of θ_{23}
 - $\sin \theta_{23} > / < 0.5 \implies$ Maximal mixing?

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \underbrace{\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}}_{U_{\rm PMNS}} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

)15 Iavou

Parameter	best-fit	3σ
$\Delta m_{21}^2 \ [10^{-5} \text{ eV}^2]$	7.37	6.93 - 7.96
$\Delta m^2_{31(23)} \ [10^{-3} \ {\rm eV}^2]$	2.56(2.54)	$2.45 - 2.69 \ (2.42 - 2.66)$
$\sin^2 heta_{12}$	0.297	0.250 - 0.354
$\sin^2 \theta_{23}, \Delta m^2_{31(32)} > 0$	0.425	0.381 - 0.615
$\sin^2 \theta_{23}, \Delta m^2_{32(31)} < 0$	0.589	0.384 - 0.636
$\sin^2 \theta_{13}, \Delta m^2_{31(32)} > 0$	0.0215	0.0190 - 0.0240
$\sin^2 \theta_{13}, \Delta m^2_{32(31)} < 0$	0.0216	0.0190 - 0.0242
δ/π	$1.38\ (1.31)$	2σ : (1.0 - 1.9)
		$(2\sigma: (0.92-1.88))$

Neutrinos. They can change their flavour??

Oscillation formula (1st order approximation) \bullet

$$P(\nu_{\mu} \to \nu_{e}) \simeq \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \frac{\sin^{2}(\Delta_{31} - aL)}{(\Delta_{31} - aL)^{2}} \Delta_{31}^{2} \qquad \text{Matter}$$

$$+ \sin 2\theta_{23} \sin 2\theta_{13} \sin 2\theta_{12} \frac{\sin(\Delta_{31} - aL)}{(\Delta_{31} - aL)} \Delta_{31} \frac{\sin(aL)}{(aL)} \Delta_{21} \cos(aL) + \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \frac{\sin^{2}(aL)}{(aL)^{2}} \Delta_{21}^{2},$$

Neutrino mass effect (Δm²E/L)

Asymmetry \bullet

$$\mathcal{A}_{CP} = \frac{P(\nu_{\mu} \to \nu_{e}) - P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})}{P(\nu_{\mu} \to \nu_{e}) + P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})} \sim \frac{\cos\theta_{23}\sin2\theta_{12}\sin\delta_{CP}}{\sin\theta_{23}\sin\theta_{13}} \left(\frac{\Delta m}{4}\right)$$

Matter effect creates asymmetry (even with $\delta_{cp} = 0$ or π) \Rightarrow Baseline with access to \bullet second oscillation maximum to have **better CP sensitivity**

Contents of this talk.

- The neutrino mystery
- The Deep Underground Neutrino Experiment \bullet
- The physics goals of DUNE
- Pushing the limits in terms of technology
 - The Far Detector
 - The Near Detector
- Summary

The DUNE Experiment. Introduction

- The Deep Underground Neutrino Experiment (DUNE) is the next generation accelerator-based neutrino experiment
 - Located at Fermilab (Near Detector) and South Dakota (Far Detector)
 - Baseline of 1300 km
 - World's most intense neutrino beam (>1 MW) using *leading*edge superconducting RF technology (PIP II)
 - 1.2 MW upgrading to 2.4 MW (PIP III) ullet
 - Wide-band neutrino beam \bullet
- Far Detector complex
 - **40 kT** active target consists of *4 x 10kT* Liquid Argon Time Projection Chambers (LArTPC)
 - Various technologies used in the detector designs \bullet
- **Highly capable** Near Detector complex
 - Precise characterisation of the neutrino beam (spectrum and flavour) and precise cross-section measurements

Contents of this talk.

- The neutrino mystery
- The Deep Underground Neutrino Experiment
- The physics goals of DUNE \bullet
- Pushing the limits in terms of technology
 - The Far Detector
 - The Near Detector
- Summary

The DUNE Experiment. **DUNE's rich physics program**

- The main physics goal of DUNE is to discover **CP violation** in lacksquarethe leptonic sector
 - within 3 years at $\delta_{cp} = \pi/2$ \bullet
 - within 5 years 50% of δ_{cp} values (3 σ)
 - $>5\sigma$ after 10 years running
- **Neutrino mass hierarchy** determination \bullet
 - 5σ within 2 years \bullet
- **Precise measurement of the PMNS** matrix parameters
 - Determination of the octant of θ_{23}

The DUNE Experiment. **DUNE's rich physics program**

- Also a broad physics program \bullet
 - Supernova neutrinos
 - better understanding of the mechanisms in supernovas (collapse and evolution)
 - **Beyond the SM physics**
 - Nucleon decay searches (i.e. proton decay) is baryon number violation in insights in baryogenesis
 - Dark matter searches (WIMP) \bullet
 - ND-specific \bullet
 - Neutrino tridents is rare weak process (Z' gauge ulletboson)
 - Heavy Neutral Lepton \bullet
 - and more...

Contents of this talk.

- The neutrino mystery
- The Deep Underground Neutrino Experiment
- The physics goals of DUNE
- Pushing the limits in terms of technology
 - The Far Detector
 - The Near Detector
- Summary

The DUNE Far Detector Complex. **Overview**

- South Dakota Laboratory at ~1300 km from Fermilab
 - Host already numerous experiments
 - LUX/LZ, Majorana
 - Four 10-kt Fiducial LAr TPC modules, located 1.48 km underground
- Excavation started in 2019
- First module operational ~ **2026**
- Start of run:
 - 2 FD modules (20 kt), 1.2 MW beam power, with ND
- The detector modules are using different technologies
 - **Single Phase (SP)** liquid argon gas TPC
 - **Dual Phase (DP)** liquid argon gas TPC is being phased out for a new technology Vertical Drift

12

The DUNE Far Detector. Single Phase technology (general overview)

- Based on general principles of LArTPCs demonstrated by numerous neutrino experiments (MicroBooNE, ArgoNeuT...)
 - Can efficiently track particles
 - Able to do **particle identification**
 - Provide **calorimetric** measurement of showers
 - **Fast scintillation** light to provide t₀
- Push technological limits in terms of size!!
- Drift between a cathode (CPA) and anode (APA) at a field of 250-500 V/cm. Drift distance of 3.5m
- Electrons are collected at the APAs by 3 wire-planes (1 collection, 2 induction)
- Photons (127 nm) are collected by photon detectors (ARAPUCA) mounted on the APA frames

The DUNE Far Detector. Single Phase technology (APAs, CPAs, Photodetectors)

- The anode planes (APA) are 6 m x 2.3 m (HxW)
 - 25 modules for a full plane. *150 APA* in total
- Covered by more than 2500 sense wires (~5 mm pitch) laid in 3 orientations **375k channels**
 - Vertical collection plane (X), +/- 37.5 deg from vertical (U/V) induction planes
- All wires are read out on one end of the APAs
- Requirements
 - **Transparency** to the light
 - Minimum dead areas
 - **Support** for the PD, routing cables for the electronics

Eldwan Brianne | HighRR Seminar | 24/02/2021

Final APA Module

The DUNE Far Detector. Single Phase technology (APAs, CPAs, Photodetectors)

- The cathode unit are 4 m x 1.2 m assembled in panels (3) then into planes (2)
 - A CPA array consists of 25 planes in total ~600 CPA units
- Cathode plane at -180 kV
- Requirements
 - Drift field of > **250 V/cm** (Goal of 500 V/cm)
 - <1% field non-uniformity
 - HV **Stability** (Protection against sparks, discharges)
- Very complex system
 - Power supply, feedthroughs, mechanics

Full CPA assembled

The DUNE Far Detector. Single Phase technology (APAs, CPAs, Photodetectors)

- A system of PD are installed inside the APAs to detect light (ARAPUCA)
 - 10 modules per APA (1500 total)
 - SiPM from Hamamatsu: 6x6 mm2 (288k in total)
 - Total number of channels: 6k
- Very interesting light shifting and trapping system
 - Use properties of different materials to shift the wavelength and trap the photons
- Readout
 - Active/Passive *ganging* of the SiPMs (6x8)
 - FEB designed for Mu2e with off-the-shell components: Spartan 6 FPGA, ultrasound chips...
 - Up to 64 channels, ~120 mW per channel
 - Max data rate: 10 MB/s per FEB (24/APA)

Chan48..63

₩

FLASH

CFG ROM

The DUNE Far Detector. Single Phase technology (TPC Electronics)

- The FE is placed **inside** the cryostat (better for S/N and less cables going in/out)
 - **Low noise** is essential (no amplification in the LAr)
 - Provides full waveform sampling
- 2500+ APA channels are collected by 20 FEMBs, digitized and send out (128 channels per FEMB)
- 3 reference designs for the ASICs (LArASIC, ColdASIC, COLDATA)
 - No access inside the cryostat **he need** to live the **full lifetime** of the experiment!
 - Imposes technological choices and constrains in LAr (hotcarrier effect)
 - Careful tests in LAr are carried out for any commercial circuits
- Readout bandwidth specifications
 - Cold ↔ Warm ~ **5 Gbps/FEMB**
 - Warm backend ~ **10 Gbps/link** (FELIX)

17

The DUNE Far Detector. **ProtoDUNE SP Prototype, a proof of concept**

- To validate the technical choices **prototype**(s) built called **ProtoDUNE**
- Built at the Neutrino Platform at CERN in the North Hall Area
- Two prototypes: SP/DP (see next slides)
- SP finished in summer 2018
 - 6x7x7 m3, **0.77 kT FV**
 - Took data before shutdown
- DP finished in June/July 2019
 - 6x6x6 m3, **300t FV**
 - Took cosmic ray data
- Largest monolithic LArTPCs in the world

The DUNE Far Detector. **ProtoDUNE SP Prototype, a proof of concept**

- First results very promising
- Low noise on all readout planes
- S/N over **10** (induction planes), **> 40** for collection plane
- Very stable running since 2018
 - Very good electron lifetime
 - Stable HV/electronics \bullet
- Very good PD performance, timing resolution ~15 ns

The DUNE Far Detector. **Dual Phase technology**

- Differences with SP technology
 - Adding **amplification** of the drift electrons in a LAr gas phase
 - Allow for a for a single drift volume with **longer drift distance**
- Micro-pattern detector (**LEM**) amplify electrons in avalanches
- Avalanches are collected on the anode (CRP **2D strips**)
- Advantages compared to SP
 - Higher S/N
 - Larger active volume (less dead material)
 - **Finer** readout pitch, less channels
 - Fewer modules/Access to the FE electronics
- Maximises the capabilities of the DUNE experiment

Eldwan Brianne | HighRR Seminar | 24/02/2021

Dual Phase

The DUNE Far Detector. **Dual Phase technology (Anode - CRP/LEM)**

- A full CPR module is 9 m^2 (Anode + Frame + LEM)
- Number of CRP in a FD module: 80 (4 x 20)
 - → ~153k channels
- LEMs \bullet
 - 1mm thickness, area 50x50 cm², copper-clad PCB plate
 - Micro-pattern gas detector: ~500 µm diameter (800 µm pitch) 180 holes/cm²
 - Outer guard ring: 10 mm free of metallisation, 5 mm copper guard ring
 - Active area ~ 86%, 3.5 kV design operation (> 30 amplification gain)
- Anode
 - Same area as LEM
 - Copper strips for 2D position (~3 mm pitch)
- Critical: careful alignment and positioning (2 mm distance) between anode and LEM **~** 26 machined spacers

LEM

The DUNE Far Detector. **Dual Phase technology (PD system)**

- Similarly as in the SP: light is produced along ionisation (127 nm)
- For the DP: two signals prompt (S1) and delayed (S2)
 - Give **time** of the event (S1)
 - Give **measurement** of ionisation charge (S2) \bullet
 - Give drift time (S2-S1)
- 8 inch PMTs from different manufacturers: Hamamatsu, ELT (US/UK), HZC (China)
 - Baseline: Hamamatsu R5912- MOD20
- PMTs are coated with TBP to shift the light to ~430 nm
- Designed for high gain (**10⁶-10⁹**), cryogenics and resists 2 bar pressure, **ns** time resolution
- Number of PD in a full module (PMTs): 720
- Electronics
 - Advance Mezzanine Cards (AMC): 64 channels, 12 bits, ~2.5 MHz sampling frequency
 - Based on the CATIROC ASIC
 - Optical link backend at **10 Gbps**

ProtoDUNE DP PMT signal in GAr/LAr

The DUNE Far Detector. **Issues with Dual Phase technology**

- DP is a very interesting concept but it has a few issues
 - It provides 2 views is difficulties in "classic" reconstruction
 - Operation a very high voltages (600 kV) + HV in gas phase
 - Electron lifetime is good enough (> 10s ms) to mitigate the gains with DP
- New technology being developed: Vertical Drift concept
- Best of both worlds: combine advantages of SP/DP technologies
 - Transparent cathode at middle height better HV stability
 - Readout planes at LAr surface and cryostat floor using perforated anodes with segmented strips (3 views) modularity and stability
 - PD integrated inside the cathode **better** integration and HV decoupling with fibers for power/data

Contents of this talk.

- The neutrino mystery
- The Deep Underground Neutrino Experiment
- The physics goals of DUNE
- Pushing the limits in terms of technology \bullet
 - The Far Detector
 - The Near Detector ullet
- Summary

The DUNE Near Detector Complex. **Overview**

- Near Detector Hall situated at Fermilab
 - ~580 m from beam target \bullet
 - 60 m underground
- House various ND detector components •
 - A modular LArTPC (ND-LAr)
 - A high-performance GArTPC (ND-GAr) \bullet
 - A beam monitoring detector (**SAND**) ●
- Enables the **DUNE PRISM** concept •
 - ND-LAr/ND-GAr can move off-axis (change in flux and spectrum of the lacksquareneutrino beam) methodes measurements needed for oscillation parameter measurement without a priori knowledge of v-Ar cross sections and event energy reconstruction
- **Physics Goals** •
 - Extrapolate **neutrino flux** to the FD
 - **Constrain uncertainties** in extrapolation, cross-section measurements, • neutrino flux and neutrino energy spectrum
 - **Enables large standalone physics program provided by the various** • detector technologies

The DUNE Near Detector: ND-LAr. A Highly modular LArTPC detector

- Same target material as the FD: **50t FM**
- Needs to be suitable for a high-rate environment (~50 events per spill)
 - Use **pixelated charge readout** instead of wires
 - Modularisation allows for lower drift distance and times, less problems with overlapping interactions
 - Provide **precise timing** of the event **advanced** photodetection system
 - Best active area is unique design of the modules to minimise dead space and power release (breakdown)
- Key designs:
 - Size (w/ cryostat): ~11x8x5 m (L/W/H)
 - 35 optically separated modules (FC+TPC+PDS)
 - Cryostat based on ProtoDUNE design
- Demonstrator already built at BERN
- 2x2 Demonstrator planned at Fermilab

ND-LAr demonstrator at BERN

The DUNE Near Detector: ND-LAr. A Highly modular LArTPC detector (TPC system)

- Same requirements as the FD
 - <1% field uniformity
 - Stable under 250 V/cm (up to 500 V/cm)
 - Low heat dissipation (<100 mW/cm2)
- Module size: 1x1x3.5 m (W/L/H)
- Field Cage Structure
 - 5 copper-clad, 6 mm thick FR4 panel covered in Kapton (resistive)
- Advantages \bullet
 - Small footprint (maximises active area)
 - Minimised resistive heating (spread over the full surface of the cage)
 - Provides mechanical support for the module

Field Cage prototype

3m

lm

The DUNE Near Detector: ND-LAr. A Highly modular LArTPC detector (Pixel Readout)

- State of the art pixel readout \bullet
 - First of *its kind in LArTPC*
- Anode \bullet
 - Total surface: **200 m²** of pixelated anode •
 - Pixel size: 4x4 mm²
 - Full anode, organised in 20 tiles in two columns ~10k channels per tiles
 - 70 anodes in total ~ **700k channels!** \bullet
 - Compromise between space resolution, channel ulletdensity, heat load
- Electronics
 - LArPix ASIC: 64 channels, 6 bits ADC, 5 MHz clock
 - Self triggering chip, zero-suppression
 - Serial protocol to send out the data (holds up to 2048) records) - Data rate: 5 Mb/s (@5 MHz)

LArPix on the back of the anode PCB

The DUNE Near Detector: ND-LAr. A Highly modular LArTPC detector (Light System)

- Two designs: Light Collection modules (LCM) and ArCLight
- 60 LCM and 20 ArCLight detectors per module \bullet
- Tightly integrated in the LArTPC module
 - Better light yield (dielectric)
- LCM
 - Uses wavelength shifting fibres along a module side bend into 2 bundles
 - Fibers are optically coupled to a SiPM
- ArCLight \bullet
 - Uses the ARAPUCA device
 - Sheets of WLS plastic coated in TPB and dichromic mirrors \bullet
 - Readout by 3 SiPMs
- LCM has better **efficiency** while ArCLight has a better **position** resolution

ArCLight

The DUNE Near Detector: ND-GAr. A high performance gas detector

- Placed behind the ND-LAr
 - Acting as a **spectrometer** for particles exiting the ND-LAr
 - Provides its **own physics program** for v interactions on gas argon
- Key components
 - High Pressure (**10 bar**) GArTPC as tracker
 - Surrounded by a **high performance calorimeter**
 - Inside a superconducting magnet and partial return Yoke (0.5 T)
- Challenges
 - Calorimeter integration inside the pressure vessel (PV)
 - Cryostat and Yoke act as the PV
 - Minimise fringe field and material budget

SECTION A-A

The DUNE Near Detector: ND-GAr. A high performance gas detector (TPC)

- Design based on the ALICE TPC
- Gas Mixture: *Ar-CH4* (90/10%)
 - Being optimised for better drift velocity, quenching and transverse diffusion, breakdown voltage, gain...
- Two drift volumes of **2.5 m**
 - Middle anode using 25 µm aluminised Mylar
 - Readout chambers
 - Readout chambers (MWPC) from ALICE (IROC/OROC) -Acquired in 2019
 - Inner **pixelized** ROC
- Readout electronics
 - Likely based on the LArPix (with few adaptations)
- Light system
 - Would provide a t₀ for the event impacted by the gas mixture used
 - Novel opportunity for R&D for HPgTPC

The DUNE Near Detector: ND-GAr. A high performance gas detector (TPC)

- ALICE Chambers rated for 1 atm
- Need to be **tested** at 10 bar
 - Teststand at Fermilab (GOAT)
 - Teststand at RHUL
- Enables to test
 - Readout electronics
 - Different gas mixtures
 - Breakdown, gain as function of the gas pressure
- First tests performed at 1 atm
 - Test ongoing going up in pressure and voltage

Eldwan Brianne | HighRR Seminar | 24/02/2021

GOAT at Fermilab

The DUNE Near Detector: ND-GAr. A high performance gas detector (ECAL)

- High performance **calorimeter** around the TPC
- Requirements
 - Identify photons from NC events position/angular resolution
 - Provide complementary information (PID, energy) energy resolution
 - **Precise timing** for t₀ (~ ns)
 - **Neutron** identification and energy measurement capability (ToF) where sub-ns time resolution
- Key designs
 - **High granular** layers based on **CALICE** R&D (AHCAL SiPM-on-tile design)
 - 2 mm Copper / 5 mm plastic scintillator tiles of 2.5x2.5 cm²
 - **Cross-striped** layers in the back based on Mu2e
 - 4 cm width spanning the full module width/length (~few m)
 - SiPM readout
 - Estimated number of channels: ~1 3M

The DUNE Near Detector: ND-GAr. A high performance gas detector (ECAL)

- High performance **calorimeter** around the TPC
- Requirements
 - **Identify photons** from NC events **position/angular resolution**
 - Provide *complementary information* (PID, energy) energy resolution
 - **Precise timing** for t₀ (~ ns)
 - **Neutron** identification and energy measurement capability (ToF) sub-ns time resolution
- Key designs
 - **High granular** layers based on **CALICE** R&D (AHCAL SiPM-on-tile design)
 - 2 mm Copper / 5 mm plastic scintillator tiles of 2.5x2.5 cm²
 - **Cross-striped** layers in the back based on Mu2e
 - 4 cm width spanning the full module width/length (~few m)
 - SiPM readout \bullet
 - Estimated number of channels: ~1 3M
- Estimated performance
 - Energy resolution $\Rightarrow 6\%/\sqrt{E} + 4\%$
 - Angular resolution $\Rightarrow 8^{\circ}/\sqrt{E} + 4^{\circ}$

The DUNE Near Detector: ND-GAr. A high performance gas detector (ECAL)

- **Readout electronics**
 - HG layers: FE electronics **integrated** in the layer based on the CALICE AHCAL design
 - SiPM readout by ASIC is likely KlauS chip (Heidelberg)
- Engineering and Integration
 - Ongoing studies to integrate the ECAL with the TPC and cryostat
 - Constant feedback to *optimise* and *identify* critical design issues
- Prototyping
 - Small *prototype* planned in the next years

DESY

Eldwan Brianne | HighRR Seminar | 24/02/2021

KlauS-5 ASIC in BGA package

Module design for the ECAL

The DUNE Near Detector: SAND. Beam monitoring detector with fully active tracker

- **SAND**: System for on Axis Neutrino Detection
 - Consists of a target tracker and calorimeter inside a magnet
- Requirements
 - Beam monitoring on few day basis
 - **Precision flux measurement** (neutrino beam flavor content)
- Several proposed designs
 - Fully active tracker: **3DST + TPCs**
 - **3DST** + Straw tube tracker (**STT**)
 - STT-only
- ECAL + Magnet
 - From the **KLOE** detector (Frascati)
 - Compact Lead/Scintillating fibers calorimeter readout by PMTs
 - Discussions ongoing on replacing the PMTs with SiPMs \bullet
 - Good energy resolution ~ $5\%\sqrt{E}$
 - Very good timing resolution ~ 50 ps/E
 - 0.6 T B-field

KLOE detector

36

The DUNE Near Detector: SAND. Beam monitoring detector with fully active tracker (3DST)

- Innovative tracking detector based on **SuperFGD** in T2K
- Active volume: 2.4 x 2.16 x 1.92 m³
- 1.5x1.5x1.5 cm³ plastic scintillator cubes
 - **Optically isolated** (chemical etching) \bullet
 - Readout by **3 orthogonal WLS fibers** (1 mm diameter)
- Provides full angular coverage and calorimetric measurement of the energy
- Number of cubes: ~ **3 M**!
- Readout
 - **MPPC** (S13360-1325PE) optically coupled to the fiber
 - Precise alignment with the readout interface board
- **Front-End electronics**
 - SuperFGD based on **CITIROC** ASIC
 - 3DST: Custom ASIC (possible **KlauS**) is better time resolution, power consumption, production cost

Contents of this talk.

- The neutrino mystery
- The Deep Underground Neutrino Experiment
- The physics goals of DUNE
- Pushing the limits in terms of technology
 - The Far Detector
 - The Near Detector
- Summary \bullet

Summary.

An exciting future in particle physics

- The DUNE experiment is the next-generation long-baseline neutrino experiment \bullet
- It is pushing for: \bullet
 - new frontiers in neutrino physics \bullet
 - breaking technological limits throughout the FD and ND detectors \bullet
- The FD/ND are unique and using state of the art detector engineering \bullet
 - These unique designs will allow DUNE to reach its full potential \bullet
- This is an exciting time for young scientists to join this endeavour \bullet

Thank you for your attention.

References

- 1. DUNE FD TDR Volumes 1-4 (arxiv:2002.02967v3, arxiv:2002.03005v2, arxiv:2002.03010v3)
- 2. First Results of ProtoDUNE SP (arxiv:2007.06722v3)
- 3. ProtoDUNE SP TDR (arxiv:1706.07081v2)
- 4. The DUNE Far Detector Interim Design Report Volume 3 (arxiv:1807.10340v1)
- 5. DUNE Near Detector Conceptual Design Report
- 6. Status of ProtoDUNE DP (arxiv:1910.10115v1)
- 7. LArPix: Demonstration of low-power 3D pixelated charge readout for liquid argon time projection chambers (arxiv:1808.02969v3)
- 8. Vertical Drift Concept proposal: <u>https://edms.cern.ch/document/2429382/1</u>

