

Update on: **XIDer** – an **X**-ray Integrating **De**tector for the ESRF-EBS Upgrade

David Schimansky

- The European Synchrotron Radiation Facility (ESRF) & its upgrade program (EBS)
- Introduction to XIDer
- Readout ASIC
 - Design
 - Characterisation Example: Frontend noise & linearity
- Sensor/ASIC assembly prototypes
- Conclusion & Outlook

European Synchrotron Radiation Facility (ESRF)

European Synchrotron Radiation Facility (ESRF)

- Joint research facility in Grenoble, France (founded in 1988)
- Funded by 22 countries (France, Germany, Italy, ..)
- Electron synchrotron x-ray source (up to ~150keV)
- First 3rd generation synchrotron (opened in 1994)
- Circumference: 844m
- 2000 publications per year
- Advertises itself as "user facility"
- Available research methods
 - X-ray spectroscopy
 - X-ray tomography
 - X-ray diffraction

ESRF Upgrade Program (EBS)

EBS electromagnets

Extremely-Brilliant Source (ESRF-EBS):

- Storage ring & instrumentation upgrade program over the period 2015-2022
- New storage ring has been finished and opened in 2020 as planned
- Improved energy efficiency (30% cost reduction)
- Increased brilliance of x-ray beam
- Needs new detectors tailored to the upgraded source
 - \Rightarrow Reach out to external laboratories

ESRF Upgrade Program (EBS)

EBS electromagnets

Extremely-Brilliant Source (ESRF-EBS):

- Storage ring & instrumentation upgrade program over the period
 2015-2022
- New storage ring has been finished and opened in 2020 as planned
- Improved energy efficiency (30% cost reduction)
- Increased brilliance of x-ray beam
- Needs new detectors tailored to the upgraded source

 \Rightarrow Reach out to external laboratories

XIDer: X-ray Integrating Detector

XIDer:

- R&D project until end of 2022
- 4-year funding: Shared 50/50 by ESRF and Heidelberg University
- HighRR members working on this project: Marin Collonge (ESRF), Christian Kreidl (HD), Michael Ritzert (HD), David Schimansky (HD)

Build detector for any kind of (time-resolved) x-ray diffraction experiment at the ESRF:

- Energy range:
- Different spatial resolutions:
- Dynamic range:
- Cope with different bunch filling modes for storage ring
- Time-resolved
- Flexible readout schemes

30-100keV

100µm vs. 200µm pixel pitch

Single Photons up to > $10^{11} \frac{ph}{mm^2s}$

>100k frames/s

single frame, accumulated frames, ..

Build detector for any kind of (time-resolved) x-ray diffraction experiment at the ESRF:

- Energy range:
- Different spatial resolutions:

• Dynamic range:

- Cope with different bunch filling modes for storage ring
- Time-resolved
- Flexible readout schemes

>100k frames/s

30-100keV

single frame, accumulated frames, ..

100µm vs. 200µm pixel pitch

Single Photons up to > $10^{11} \frac{ph}{mm^2s}$

Example cases of possible bunch modes

- Pulsed illumination for time-resolved experiments
- · Single bunches have to be recorded and processed
- Need single photon sensitivity • Expected $> 10^{11} \frac{ph}{mm^2 s}$ Big dynamic range
- Quasi-continuous illumination for 7/8 of the orbital period
- Integrate many bunches into one image

Detector Requirements: Photon Fluxes

- Requirement of big dynamic range is not only given by different bunch modes
- Even in high flux experiments, single photon sensitivity is still important:

Example: Airy disk of circular aperture hits the pixelated detector

13

HEIDELBERG

- Every pixel is connected to its own frontend in the readout ASIC
- Charge integrating frontend with continuous analog-todigital conversion for high dynamic range

- Use high-Z material to get high stopping power
- Tendency: Cadmium Telluride (CdTe)

Problems with Cadmium-Telluride (CdTe)

- Expensive and only a few suppliers around the world
- Heat sensitive: Introduction of defects >80°C
- Brittle
- Low tensile strength
- Afterglow: Generated charge signals have very long tails (see sensor measurements)
- Polarisation:
 - High photon fluxes generate space charges due to trapping of holes (low mobility-lifetime product of holes)
 - Space charges then generate electric field that counteracts field of bias HV
 - Space charge field can get so strong that HV field is cancelled completely
 - $\Rightarrow~$ Detector becomes "blind" to incoming photons
 - ⇒ Addition of Zinc (Cadmium-Zinc-Telluride, CZT) in right amounts can solve this problem by increasing the hole mobility-lifetime product

Crack in CdTe sensor prototype after shipping

it from HD to the ESRF

 \Rightarrow BUT: CZT is almost impossible to buy. We keep trying, though.

Readout ASIC

10.03.2021 HighRR BiWeekly Seminar

Simple Photon Counting

Conceptually different: Collect drops in a bucket and measure water level

Dynamic range is limited by bucket size

Add-on to charge integration: Prevent bucket from overflowing by emptying it with spoons

Single photon sensitivity & can handle high rates & dynamic range is not limited by bucket size

 \Rightarrow A second, smaller bucket with a smaller spoon allows for even bigger dynamic range, e.g.:

- Small spoon has size of single photon => Single photon sensitivity
- Big spoon has size of several photons => Higher rates

ziti

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Continuous Conversion with Single Bucket

Continuous Conversion with Two Buckets

• Design choices and challenges:

ziti

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

- Spoon size
- Spoon rate
- Spoon ratio between stages
- Bucket sizes
- Charge pump (CP) topology
- CP matching
- Clean stage transition
- Power limitation
 - Space limitation ((100µm)² pixels)

Test Setup

10.03.2021 HighRR BiWeekly Seminar

For this chip iteration, we want to be below 600e- (input referred noise)

- Blue data points: Average of 4000 measurements for same comparator threshold
- Orange curve: Error function fit

UNIVERSITÄT HEIDELBERG

ZUKUNFT SEIT 1386

ziti

Frontend Noise Measurement

• Different input capacitances (good sanity check)

- Fits to simulation almost perfectly
- As expected: Noise rises by factor of ~1.4 (1.5 in sim) from 0fF to 600fF input capacitance

ziti

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Frontend Counting Linearity Measurement

Measured linearity of T2

ziti

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

- Linear fit performed for injections $<42\gamma_{30keV}$ (explanation on next slides)
- Up to a point of 80 γ_{30keV}, FE shows
 linear behaviour, maximum deviation of
 less than 1 count
- Above 80 $\gamma_{30\text{keV}}$ the curve bends
- At 140 $\gamma_{30\text{keV}}$ the maximum deviation is roughly 3 ADUs

Frontend Counting Linearity Measurement

Measured linearity of T2

- At ~42 injected γ_{30kev} the output voltage of the first stage is at the supply voltage (saturation)
- In first order: Frontend is robust against CSA saturation because additional charge is still stored on C_{f1} (it can't go anywhere else)
- If we go too far: Nonlinearities in charge pump cause error in measurement
- **Important:** Most of the experiments will be below 42 γ_{30keV} at the same time

Frontend Counting Linearity

Simulated linearity of T2

- Simulation shows similar behaviour:
 - Below $70\gamma_{30\text{keV}}$ the frontend is linear

ziti

- For 140 injected γ_{30keV} the deviation is 3 ADU
- Side note: This is without noise!

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Frontend Counting Linearity

Simulated linearity of T3

 Fixing parasitic effects in charge pump yields perfect linearity from 0 to 140 injected 30keV photons according to simulation (without noise!)

ziti

Needs to be verified in lab

measurement

UNIVERSITÄT HEIDELBERG

ZUKUNFT SEIT 1386

Sensor/ASIC Assembly Prototypes

10.03.2021 HighRR BiWeekly Seminar

Challenges for ASIC/Sensor Interconnection

- Plan: Pixelwise flip-chip interconnection with 100µm pitch
- Need to fill gaps in between pads with conductive material
- Problems with CdTe:
 - No high temperatures (>80°C)
 - No mechanical pressure
- \Rightarrow Soldering is out of question

ziti

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Challenges for ASIC/Sensor Interconnection

- Plan: Pixelwise flip-chip interconnection with 100µm pitch
- Need to fill gaps in between pads with conductive material
- Problems with CdTe:
 - No high temperatures (>80°C)
 - No mechanical pressure
- \Rightarrow Soldering is out of question
- Solution proposed and carried out by Christian Kreidl:
 - Place stack of gold studs on ASIC to fill gaps
 - Dip gold stud tips in conductive glue that cures at room temperature
 - Flip sensor on top

UNIVERSITÄT HEIDELBERG ZUKUNFT

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386 ziti

top view of 2 stacked gold studs, 80µm diameter

2 stacked gold studs with tail

1 gold stud with glue height: 80µm width: 78µm

2 gold studs with glue

height: 83µm width: 57µm

2 gold studs with glue

10.03.2021 HighRR BiWeekly Seminar

Schaltungstechnik und Simulation

"Front" of CdTe prototype sensor

Design by ESRF, manufactured by Acrorad

4x4 pixel test structures with guard ring and different pixels sizes and pitches (100 μ m, 200 μ m & 300 μ m)

"Front" of CdTe prototype sensor

Design by ESRF, manufactured by Acrorad

Top of ASIC prototype SUS65T2

Design by HD, manufactured by TSMC

10.03.2021 HighRR BiWeekly Seminar

"Front" of CdTe prototype sensor

ziti

10.03.2021 HighRR BiWeekly Seminar

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Unmounted 3D-printed cap with LED

Mounted cap on carrier PCB

Sensor Measurements: 2D Image

 Our first images taken with an actual CdTe sensor!

(2020 milestone)

- Proof for basic functionality of:
 - Sensor prototype
 - ASIC/Sensor interconnection
 - ASIC (Frontend, control, data readout, ..)

-0.5 -

Laser position Internal pixel number

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

ziti

Number of counts (still calibrated for 30keV photons)

30

20

10

40

17

19

23

27

17

19

23

27

Pattern: 200u_hybrid

Sensor Measurements: 2D Image

• But: Even seconds after taking an image, we still see a signal

 \Rightarrow Afterglow of CdTe Sensor

ziti

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

- Return to single pixel measurement
- Idea:
 - Shine LED on sensor for 10 minutes
 - Turn off LED
 - Measure signal troughout LED pulse & afterglow for 5 hours
- Aim:
 - Study time dependency of afterglow (does it depend on intensity of LED irradiation?)

Trade-off between time resolution and signal sensitivity

UNIVERSITÄT HEIDELBERG

ZUKUNFT SEIT 1386

Sensor Measurements: Afterglow (preliminary)

• Even 30 minutes after LED irradiation, afterglow is still visible!

ziti

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

- Might be a show stopper for single photon sensitivity after high photon flux
- Needs further investigation (Marin
 - Collonge)

- After more than a year, we finally found a commercial solution (Polymer Assembly Technology) for CdTe/ASIC interconnection
 - Sensor prototype is supported by a plastic carrier
 - First tests look very promising

UNIVERSITÄT HEIDELBERG

ZUKUNFT SEIT 1386

ziti''''

- XIDer is a multi-purpose detector for time-resolved x-ray experiments at the ESRF
- Uses unconventional approach to combine single photon sensitivity and high dynamic range
- My tasks:
 - Design and characterise the readout ASIC
 - Verify feasibility
 - Develop design concepts for large scale integration
- ASIC prototypes SUS65T1, SUS65T2 and SUS65T3 have been characterised and show very satisfying performance
- No show stopper on chip side (yet)
- First sensor measurements after long interconnection struggle
- Is sensor material good enough? Should we start with Silicon? Hope for CZT...

Planned Future Steps

- Solutions for large scale system integration (partially done):
 - Frame-wise frontend commands (called telegram)
 - Data storage
 - Design of output data links for high data rates (several tens of GB/s)
 - Automated frontend calibration, maybe via on-chip processor
- Array compatible layout
- Characterise sensor with new sensor/ASIC assemblies
- Perform beamline measurements at ESRF with Sensor/ASIC assemblies
- Use sensor measurement findings to further refine ASIC design
- Design first draft of final detector module
- Design "final testchip"

UNIVERSITÄT HEIDELBERG

Backup

10.03.2021 HighRR BiWeekly Seminar

- **The** figure of merit for a synchrotron's performance
- High brilliance \triangleq high flux of useful photons at the sample and detector

- 1st: Particle accelerators that generate synchrotron light as a parasitic effect
- 2nd : Dedicated synchrotron light production
- 3rd: Higher brilliance by introducing insertion devices (wigglers/undulators)
- 4th : Even higher brilliance and coherence

Taken from H. Shiraki et al "THM growth and characterization of 100 mm diameter CdTe single crystals", IEEE Trans. Nucl. Sci, vol. 54, pp. 117-1723, 2009

• 100mm diameter, 300mm length

Count rate collapses for high photon fluxes:

Phys. Rev. B, 2008)

Frontend Counting Linearity

- Charge integration is still working due to charge conservation:
 - Injected charge has no other path to flow off
 - Charge has to be stored on C_{f1} following $Q = C_{f1} \cdot V_{Cf1} = C_{f1} \cdot (CSA_{out} V_{in})$
 - CSA_{\text{out}} can't increase any further, so $\boldsymbol{V}_{\text{in}}$ decreases instead
- In first order, this does not affect the measurement:
 - The continuous conversion only cares about the actual charge, not the voltages
 - \Rightarrow Frontend still linear beyond injected charge of $42\gamma_{30keV}$

UNIVERSITÄT HEIDELBERG ZUKUNFT

Frontend Counting Linearity

- Charge integration is still working due to charge conservation:
 - Injected charge has no other path to flow off
 - Charge has to be stored on C_{f1} following $Q = C_{f1} \cdot V_{Cf1} = C_{f1} \cdot (CSA_{out} V_{in})$
 - CSA_{\text{out}} can't increase any further, so $\boldsymbol{V}_{\text{in}}$ decreases instead
- In first order, this does not affect the measurement:
 - The continuous conversion only cares about the actual charge, not the voltages
 - \Rightarrow Frontend still linear beyond injected charge of $42\gamma_{30keV}$
- But: If V_{in} drifts off too far, the charge package size begins to change because of parasitic charge injection effects in the charge pump
 - \Rightarrow Bend of the curve above roughly 80 $\gamma_{\rm 30 keV}$

Failure Example: Sensor Interposer

Interposer (design by ESRF) -Sensor (ESRF) -ASIC (HD)

- Use sensor interposer (silicon) for easier bump bonding process
- Sensor/interposer bump bonding performed by external company
- Glue and wire bond interposer to PCB
- Route sensor pixel outputs on PCB to ASIC and connect via wire-bonds
- Interposer needed Al-bonds (which we can't do in-house)
 - \Rightarrow Ask Ralf Achenbach from KIP for help
- Unfortunately: The interposer pad insulation is too weak to carry sensor HV (500V), even though the manufacturer knew that we route the HV across the interposer
 - \Rightarrow Every interposer in use breaks down as soon as sensor HV is applied

UNIVERSITÄT HEIDELBERG ZUKUNFT

Failure Example: Sensor Interposer

- Use sensor interposer (silicon) for easier bump bonding process
- Sensor/interposer bump bonding performed by external company
- Glue and wire bond interposer to PCB ٠
- Route sensor pixel outputs on PCB to ASIC and connect via wire-bonds
- Interposer needed Al-bonds (which we can't do in-house)
 - \Rightarrow Ask Ralf Achenbach from KIP for help
- Unfortunately: The interposer pad insulation is too weak to carry sensor HV • (500V), even though the manufacturer knew that we route the HV across the interposer
 - \Rightarrow Every interposer in use breaks down as soon as sensor HV is applied

ASIC

UNIVERSITÄT HEIDELBERG ZUKUNFT