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Universe evolution:
based on positive cosmological constant

Dark Energy

simplest case: infinitesimal (tuneable) +ve cosmological constant

Inflation (approximate de Sitter)

describe possible accelerated expanding phase of our universe [8]
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Relativistic dark energy 70-75% of the observable universe

negative pressure: p = −ρ => cosmological constant

Rab −
1

2
Rgab + Λgab =

8πG

c4
Tab => ρΛ =

c4Λ

8πG
= −pΛ

Two length scales:

[Λ] = L−2 ← size of the observable Universe

Λobs ' 0.74× 3H2
0/c

2 ' 1.4× (1026 m)−2

↖
Hubble parameter ' 73 km s−1 Mpc−1

[ Λ
G×

c3

~ ] = L−4 ← dark energy length ' 85µm
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de Sitter spacetime

vacuum solution of Einstein equations with +ve cosmological constant

and maximal symmetry: 10 isometries like flat space

SO(4, 1) vs Poincaré E4
hyperboloid from 5 dimensions: −y2

0 + ~y2 = 1
H2

Rµνλρ = H2(gµλgνρ − gµρgνλ) R = 12H2 = 4Λ

Flat slicing: ds2 = −dt2 + e2Htd~x2 exponential expansion

FRW with flat 3-space and scale factor a(t) = eHt

isometries: 3 space translations, 3 rotations, 1 scale, 3 special conformal

e.g. scale: ~x → ω2~x and t → t − ω/H

Closed slicing: ds2 = −dt2 + 1
H2 ch

2Ht dΩ2
3 ← unit sphere S3

Open slicing: ds2 = −dt2 + 1
H2 sh

2Ht dH2
3 ← unit hyperbolic H3
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de Sitter spacetime
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de Sitter spacetime: static coordinates

ds2 = −(1− H2r2)dt2 +
dr2

1− H2r2
+ r2dΩ2

2 ← unit sphere S2

describes 1/4 of the spacetime

similarity with a black hole metric:

no singularity but cosmological horizon at r = H−1 ≡ rC [11] [13]
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Observed Universe: homogeneous, isotropic and (spacially) flat

=> all regions causally connected in the past

But in contradiction with Einstein’s equations

observed universe has a huge number of causally disconnected regions

Inflation proposal:

postulates an exponentially expanding period in early times

a small region becomes fast exponentially large

=> explains homogeneity, isotropy and flatness problems

it needs 50-60 e-foldings of expansion at least

It predicts also small anisotropies from slight deviation from de Sitter space

temperature/density perturbations from quantum fluctuations
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Inflation:

Theoretical paradigm consistent with cosmological observations

But phenomelogical models with not real underlying theory [2]

introduce a new scalar field that drives Universe expansion at early times

Inflaton potential

slow-roll region with V ′,V ′′ small compared to the de Sitter curvature
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Swampland de Sitter conjecture

String theory: vacuum energy and inflation models

related to the moduli stabilisation problem

Difficulties to find dS vacua led to a conjecture:

|∇V |
V

≥ c or min(∇i∇jV ) ≤ −c ′ in Planck units

with c , c ′ positive order 1 constants Ooguri-Palti-Shiu-Vafa ’18

Dark energy: forbid dS minima but allow maxima

Inflation: forbid standard slow-roll conditions

Assumptions: heuristic arguments, no quantum corrections

−→ ongoing debate... [25] [30]
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Swampland Program Vafa ’05, Ooguri-Vafa ’06

Not all effective field theories can consistently coupled to gravity

-anomaly cancellation is not sufficient

- consistent ultraviolet completion can bring non-trivial constraints

those which do not, form the ‘swampland’

criteria => conjectures

supported by arguments based on string theory and black-hole physics

The first and most established example is the Weak Gravity Conjecture:

gravity is the weakest force implying a minimal non-trivial charge

q ≥ m/
√

2 in Planck units 8πG = κ2 = 1

Arkani-Hamed, Motl, Nicolis, Vafa ’06

I. Antoniadis (Greece, September 2020) 10 / 33



Reissner-Nordstøm black hole

ds2 = −f (r)dt2 +
dr2

f (r)
+ r2(dθ2 + sin2 θdφ2)

f (r) = 1− 2M

r
+

Q2

r2
M =

m

8π
, Q =

q2

32π2

Q2: repulsive electric energy, while −2M: attractive gravity force [6]

Two horizons at r = r± satisfying f (r) = 0: r± = M

(
1±

√
1− Q2

M2

)
Q2 < M2: two real roots with 0 < r− (inner) < r+ (outer horizon)

r− hides the singularity at r = 0, while between horizons t is space like

Q2 = M2: r− = r+ => extremal BH

electric and gravity forces are balanced

Q2 > M2: complex roots, no horizon => naked singularity at r = 0

the repulsive force is stronger than gravity and forbids BH horizons

I. Antoniadis (Greece, September 2020) 11 / 33



Weak Gravity conjecture

Existence of states with Q2 > M2 minimal non-trivial charge

=> Charged black holes can decay

no BH remnants

since naked singularities are forbidden by the Weak Cosmic Censorship

Next: generalisation to de Sitter space using similar arguments

I.A.-Benakli ’20
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Reissner-Nordstøm black hole in de Sitter space [6]

ds2 = −f (r)dt2 +
dr2

f (r)
+ r2(dθ2 + sin2 θdφ2)

f (r) = 1− 2M

r
+

Q2

r2
− Λ

3
r2 M =

m

8π
, Q =

q2

32π2
, Λ =

3

l2
= 3H2

f (r) = 0 => 4 roots: one -ve (unphysical), one +ve, two +ve or complex

Define P(r) ≡ −r2f (r) = l−2r4 − r2 + 2Mr − Q2

=> its discriminant ∆ ∝ −27
l2

(Ml)4+(l2 + 36Q2)(Ml)2−Q2(l2 + 4Q2)2

∆ > 0 => 3 positive roots: 0 < r− < r+ < rC

rC : cosmological horizon (→∞ when Λ→ 0)

∆ = 0 => r− = r+ < rC , or r− < r+ = rC

∆ < 0 => r± complex and rC > 0, or r− > 0 and r+, rC complex
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Reissner-Nordstøm black hole in de Sitter space

∆ > 0 => 3 Horizons 4 Regions [16]

-

0

I Inner Horizon II

r−

Outer Horizon III

r+

Cosmological Horizon IV

rC

I. Antoniadis (Greece, September 2020) 14 / 33



∆ is quadratic polynomial of M2l2 with roots

M2
±(l ,Q2) =

1

54l

[
l(l2 + 36Q2)±

(
l2 − 12Q2

)3/2
]

∆ < 0 outside the roots (for l2 ≥ 12Q2), or for l2 ≤ 12Q2

For ∆ > 0 => four regions: 0 < r− < r+ < rC

Region IV: r > rC

t space-like, the cosmological constant dominant over all forces

Region III: r+ ≤ r ≤ rC f (r) ∼ 1 constant

Region II: r− ≤ r ≤ r+ BH interior

t space-like, dominance of gravitational attraction

Region I: 0 < r ≤ r− dominance of electromagnetic repulsion

Define Q±: M2
±(l ,Q2

±) = M2 Q+ ≤ Q−
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0
1

12

Q2 / l20

1

27

2

27

M2 / l2

M+
2(l,Q+

2)

M-
2(l,Q-

2)

[14] [19]
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Comparison of forces

1 M2 <
l2

27
: Q+ does not exist

As Q ↗, Q < Q− and M > M−(l ,Q2) => r− ↗, r+ ↘, rC ↗

Region II shrinks with r+ → r−

As Q > Q− and M2 < M2
−(l ,Q2) => ∆ < 0 and Region II disappears

The repulsive electric force is stronger and forbids BH horizons

2
l2

27
≤ M2 ≤ 2l2

27
: 3 horizons => Q ∈ [Q+,Q−],M ∈ [M−,M+]

As Q ↘ towards Q+ => r− ↘, r+ ↗ and rC ↘ Region III shrinks

For Q < Q+ Region III disappears and dS space is ‘eaten’ by the BH

As Q ↗ towards Q− => r− ↗, r+ ↘ and rC ↗ Region II disappears

For Q > Q− the electric force is strong and forbids again BH horizons
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Comparison of forces

-
I Inner Horizon II

r−

Outer Horizon III

r+

Cosmological Horizon IV

rC

3 M2 =
2l2

27
=> Q+ = Q− = l/

√
12

at Q = Q± the 3 horizons coincide r− → r+ → rC → l/
√

6

4 M2 >
2l2

27
: there is only one horizon defined at δM = δQ2/l

in the parametrization M =
√

2
27 l + δM, Q2 = l2

12 +
√

2
3δQ

2

δM > δQ2/l : dS ‘eaten’ by the BH

δM < δQ2/l : electric repulsion forbids BH horizons

Weak Gravity conjecture in dS space: minimal non-trivial charge qmin(m, l)

defined in the green region of the figure [16] I.A.-Benakli ’20
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Weak gravity conjecture in dS space [16]

Small charge: Q2 ≤ l2

12

(
q2 ≤ π

ΛG

)
:

M2 < M2
−(l ,Q2) = 1

54l

[
l(l2 + 36Q2)−

(
l2 − 12Q2

)3/2
]

=> flat space limit: Q2 > M2 + M4

l2
+O(1/l4)

Large charge: Q2 ≥ l2

12

(
q2 ≥ πl2

3G

)
: M2 < 3

2
1
l2

(
Q2 + 5

36 l
2
)2

=> strong curvature limit (l → 0): Q2 >
√

2
3 lM −

5
36 l

2

independent of the Newton constant: q >
(

32π2

3

)1/4√
lm
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Conclusions on WGC on dS space

Weak gravity conjecture in an accelerating Universe:

existence of a state with charge larger than a minimal value

generalising the flat space result Q2 > M2 in Planck units

minimal charge depends on the mass and the Hubble constant

small cosmological constant H < M (also H < MP√
12Q

) =>

power corrections to the flat result Q2 > M2 + M4H2

large cosmological constant =>

minimal charge2 linear in mass Q2
min ∼ M/H

constraints for particle physics models of inflation

I. Antoniadis (Greece, September 2020) 20 / 33



The cosmological constant in Supergravity

Highly constrained: Λ ≥ −3m2
3/2

equality => AdS (Anti de Sitter) supergravity

m3/2 = W0 : constant superpotential

inequality: dynamically by minimising the scalar potential

=> uplifting Λ and breaking supersymmetry

• Λ is not an independent parameter for arbitrary breaking scale m3/2

What about breaking SUSY with a <D> triggered by a constant FI-term?

standard supergravity: possible only for a gauged U(1)R symmetry:

absence of matter => W0 = 0→ dS vacuum Friedman ’77

• exception: non-linear supersymmetry
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Non-linear SUSY in supergravity
I.A.-Dudas-Ferrara-Sagnotti ’14

K = XX̄ ; W = f X + W0

X ≡ XNL nilpotent goldstino superfield [24]

X 2
NL = 0 => XNL(y) =

χ2

2F
+
√

2θχ+ θ2F

=> V = |f |2 − 3|W0|2 ; m2
3/2 = |W0|2

V can have any sign contrary to global NL SUSY

NL SUSY in flat space => f =
√

3m3/2Mp

R-symmetry is broken by W0
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A new FI term Cribiori-Farakos-Tournoy-Van Proeyen ’18

gauge invariant at the Lagrangian level but non-local

becomes local and very simple in the unitary gauge

Global supersymmetry: gauge field-srength superfield
↙

LnewFI = ξ1

∫
d4θ

W2W2

D2W2D̄2W2
DW = −ξ1D + fermions

It makes sense only when < D >6= 0 => SUSY broken by a D-term

Supergravity generalisation: straightforward

unitary gauge: goldstino = U(1) gaugino = 0 => standard sugra −ξ1D
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New FI term in supergravity

Pure sugra + one vector multiplet =>

L = R + ψ̄µσ
µνρDρψν + m3/2ψ̄µσ

µνψν −
1

4
F 2
µν −

(
−3m2

3/2 +
1

2
ξ2

1

)
ξ1 = 0 => AdS supergravity

ξ1 6= 0 uplifts the vacuum energy and breaks SUSY

e.g. ξ1 =
√

6m3/2 => massive gravitino in flat space
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The cosmological constant in Supergravity
I.A.-Chatrabhuti-Isono-Knoops ’18

New FI-term introduces a cosmological constant in the absence of matter

Presence of matter => non trivial scalar potential net result: ξ1 → ξ1 e
K/3

but breaks Kähler invariance

However new FI-term in the presence of matter is not unique

Question: can one modify it to respect Kähler invariance?

Answer: yes, constant FI-term + fermions as in the absence of matter

=> constant uplift of the potential, Λ free (+ve) parameter besides m3/2

In general ξ1 → ξ1 f (m3/2[φ, φ̄]) I.A.-Rondeau ’99

It can also be written in N = 2 supergravity [9]

I.A.-Derendinger-Farakos-Tartaglino Mazzucchelli ’19
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Moduli stabilisation in type IIB

Compactification on a Calabi-Yau manifold => N = 2 SUSY in 4 dims

Moduli: Complex structure in vector multiplets

Kähler class & dilaton in hypermultiplets

=> decoupled kinetic terms

turn on appropriate 3-form fluxes (primitive self-dual) => N = 1 SUSY

+ orientifolds and D3/D7-branes

vectors and RR companions of geometric moduli are projected away =>

all moduli in N = 1 chiral multiplets + superpotential for the

complex structure and dilaton → fixed in a SUSY way Frey-Polchinski ’02

Kähler moduli: no scale structure, vanishing potential (classical level)
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Stabilisation of Kähler moduli

Non perturbative superpotential from gaugino condensation on D-branes

=> stabilisation in an AdS vacuum Derendinger-Ibanez-Nilles ’85

Uplifting using anti-D3 branes Kachru-Kallosh-Linde-Trivedi ’03

or D-terms and perturbative string corrections to the Kähler potential

Large Volume Scenario Conlon-Quevedo et al ’05

Ongoing debate on the validity of these ingredients in full string theory

While perturbative stabilisation has the old Dine-Seiberg problem

put together 2 orders of perturbation theory violating the expansion

possible exception known from filed theory:

logarithmic corrections → Coleman-Weinberg mechanism

I. Antoniadis (Greece, September 2020) 27 / 33



Log corrections in string theory:
localised couplings + closed string propagation in d ≤ 2

Effective propagation of massless bulk states in d ≤ 2 => IR divergences [30]

d = 1: linear, d = 2: logarithmic corrections for (brane) localised couplings

on the size of the bulk due to local closed string tadpoles I.A.-Bachas ’98

e.g. gauge coupling corrections, linear dilaton dependence on the 11th dim

Type II strings: correction to the Kähler potential ↔ Planck mass
I.A.-Ferrara-Minasian-Narain ’97

Large volume limit: it corresponds to a 4d localised Einstein-Hilbert term

in the 6d internal space I.A.-Minasian-Vanhove ’02 [??]

S IIB
grav =

1

(2π)7α′4

∫
M4×X6

e−2φR(10) +
χ

(2π)4α′

∫
M4

(
2ζ(3)e−2φ +

2π2

3

)
R(4)

χ: Euler number = 4(nH − nV ) 4-loop σ-model ↗ vanishes for orbifolds
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Log corrections in string theory I.A.-Bachas ’98

decompactification limit in the presence of branes

(a)

(b)

(c)

(0 , p  )

(0 , p  )

( p  , p  )

A ∼ 1

V⊥

∑
|p⊥|<Ms

1

p2
⊥
F (~p⊥)

V⊥ =
∏

i Ri ~p⊥ = (n1/R1, · · · , nd/Rd)

Ri ∼ R >> ls =>

A ∼


O(R) for d=1

O(logR) for d=2

finite for d> 2

local tadpoles: F (~p⊥) ∼
(

25−d∏d
i=1 (1 + (−)ni )− 2

∑16
a=1 cos(~p⊥~ya)

)
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perturbative moduli stabilisation I.A.-Chen-Leontaris ’18, ’19

Kähler potential:

K = −2 ln

(
V + ξ + η ln

V⊥
w2

+O(
1

V
)

)
= −2 ln

(
V + η lnµ2V⊥

)
w2 ' |χ|

ξ = −1
4χf (gs) ; f (gs) =

{
ζ(3) ' 1.2 smooth CY

π2

3 g2
s orbifolds

η = −1
2gsT0ξ [28]

Using 3 mutual orthogonal 7-brane stacks with D-terms (magnetic fluxes)

and minimising with respect to transverse volume ratios

=> V ' 3ηW2
0

V3

(
lnµ6V − 4

)
+ 3

d

V2
W0: constant superpotential, d : D-term

dS minimum: −0.007242 <
d

ηW2
0µ

6
≡ ρ <−0.006738 with V ' e5/µ6
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ϱ = -0.00695

ϱ = -0.00678 ϱ = -0.00669 > ϱmax

15000 20000 25000


5

10

15

Veff

2 extrema min+max → −0.007242 < ρ < −0.006738 ← +ve energy of min
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perturbative moduli stabilisation I.A.-Chen-Leontaris ’18, ’19

ξ = −1
4χf (gs) ; f (gs) =

{
ζ(3) ' 1.2 smooth CY

π2

3 g2
s orbifolds

η = −1
2gsT0ξ

dS minimum: −0.007242 <
d

ηW2
0µ

6
≡ ρ <−0.006738 with V ' e5/µ6

exponentially large volume:

µ =
eξ/6η

w
=
√
|χ|e−

1
3gsT0 → 0 =>

weak coupling and
large χ or/and W0 from 3-form flux to keep ρ fixed

requirement: negative χ (η < 0) and surplus of D7-branes (T0 > 0)
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Conclusions

Novel D-terms in supergravity that do not gauge the R-symmetry

allow to write a positive cosmological constant even without matter fields

their implementation in string theory: open problem

New mechanism of moduli stabilisation is string theory (type IIB)

perturbative: weak coupling, large volume

based on log corrections in the transverse volume of 7-branes

due to local tadpoles induced by localised gravity kinetic terms

arising only in 4 dimensions!

can lead to de Sitter vacua in string theory

explicit counter-example to dS swampland conjecture

Open question: realise slow-roll inflationary models in string theory

I.A.-Lacombe-Leontaris ’20
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