Struggle for Pt-Xf correlations in FTF V. Uzhinsky, 16 Sept.

Problem!

What to do?

What to do?

Divide and rule!

FTF

- 1. Choose a process
- 2. Calculate string masses
- 3. Calculate Pt
- 4. Create strings

LUND hadronization

- 1. Transform to aligned string CMS
- 2. Choose produced hadron
- 3. Calculate hadron Pt
- 4. Calculate z-fraction
- 5. Calculate hadron momentum
- 6. Repeat steps 2 5 needed times
- 7. Transform back

FTF model: basic assumptions

- B.Andersson et al. Nucl. Phys. B281 289 (1987)
- B.Nilsson-Almquist, E.Stenlund, Comp. Phys. Comm. 43 387 (1987).

Processes of string's creations considered in the FTF model.

String mass distribution

$$dW/dP^{-} = (1-f)\frac{1}{\ln(P_{max}^{-}/P_{min}^{-})} 1/P^{-} + f\frac{1}{P_{max}^{-} - P_{min}^{-}}, f = 0.55$$
$$P^{-} = \sqrt{M^{2} + P_{T}^{2} + P_{z}^{2}} - P_{z} \simeq (M^{2} + P_{T}^{2})/2 P_{z} (P_{z} \to \infty)$$

Additional quark exchange processes in the FTF model.

Projectile and target diffractions

The asymmetry is increased with Pt!

LUND string fragmentation A String direction is not used!?

```
A string direction: +1 or -1
+1 projectile like string, q—qq, -1 target like string, qq – q
```

Now there is:

G4bool G4LundStringFragmentation::Loop_toFragmentString

```
G4int sign = 1;
if( theString.GetDirection() < 0 ) sign = -1;
for(unsigned int hadronl=0; hadronl < LeftVector->size(); hadronl++) {
   G4LorentzVector Tmp = LeftVector->operator[](hadronl)->Get4Momentum();
   Tmp.setZ(sign*Tmp.getZ());
   Tmp *=toObserverFramel;
   LeftVector->operator[](hadronl)->Set4Momentum(Tmp);
}
for(unsigned int hadronl=0; hadronl < RightVector->size(); hadronl++) {
   G4LorentzVector Tmp = RightVector->operator[](hadronl)->Get4Momentum();
   Tmp.setZ(sign*Tmp.getZ());
   Tmp *=toObserverFramel;
   RightVector->operator[](hadronl)->Set4Momentum(Tmp);
```

FTF model: Create strings

FTF

- 1. Choose a process
- 2. Calculate string masses V
- 3. Calculate Pt
- 4. Create strings

The question is: How to subdivide a hadron into quark and di-quark?

Algorithm implemented in Geant4

Massless q and qq!
Collinear Pq, Pqq and Ph

$$E_h = P_{qq} + |P_q|$$

$$P_h = P_{qq} - |P_q|$$

$$P_{qq} = (E_h + P_h)/2$$

$$P_q = (E_h - P_h)/2$$

Algorithm now implemented in Geant4 (invented by me)

Massless q and qq!

$$\vec{P}_{h} = \vec{P}_{q} + \vec{P}_{qq} \vec{P}_{q} = \vec{P}_{h}/2$$

$$P_{z,q/qq} = P_{z,h}/2 \pm \frac{1}{2} \sqrt{P_{z,h}^2 + \left[m_{T,h}^4 - 4 E_h^2 (P_{T,h}/2)^2 \right] / m_{T,h}^2}$$

Final Pt - Xf correlations

Check of FTF using NA61/SHINE pp data on "Temperature"

Check of FTF using NA61/SHINE pp data on "Temperature"

Check of FTF using NA49 data on rapidity distr.

Summary

- 1. New hadron splitting algorithm is implemented in the core of FTF model.
- 2. Problem of asymmetry of Pt Xf correlations is solved.
- 3. Good description of NA49 and NA61/SHINE exp. data on pp interactions is reached.

Future task:

Validate FTF for h+A interactions.

Extend the approach on QGS model!

Validate FTF for heavy meson production.