
CLICSoǒt transition to EDM4hep
EP R&D Soǒtware Working Group Meeting

Plácido Fernández Declara, Valentin Volkl, André Sailer
September 23, 2020

CERN

1

GMP Wrapper

• The Gaudi-Marlin-Processors
Wrapper project brings Marlin
functionality to Gaudi
framework, smoothly.

• It creates interfaces (wraps)
around Marlin Processors,
encapsulating them in Gaudi
Algorithms.

• Current Marlin source code is
kept intact, and it is just called
on demand from the Gaudi
Framework.

Marlin Gaudi

Language C++ C++
Working unit Processor Algorithm
Config. language XML Python
Set-up function init initialize
Working function process execute
Wrap-up function end finalize
Transient Data Format LCIO anything

2

GMP Wrapper now

• Bugs were fixed, a manual (README.md) was included with instructions to compile,
configure, run and test.

• Updated and modernization of the code base.
• Running examples are included as tests.
• A recipe to build it with Spack is also part of the k4-spack repo.
• It was included as part of Key4hep, moving there the repo1.
• CI is now included with GitHub Actions, checking syntax (clang-format), and running
two basic functionality tests.

1https://github.com/key4hep/

3

https://github.com/key4hep/

Dependencies

GMP Wrapper can be built against an iLCSoǒt installation + Gaudi. Main dependencies:

• Gaudi: to wrap Marlin processors and run the algorithms.
• Marlin: to run the underlying processors

• It will eventually disappear when only Gaudi Algorithms are used
• LCIO: Event Data Model input/output

• Can be changed, for EDM4hep i.e.

Other dependencies:

• ROOT, Boost

Or simply2:

• spack install key4hep-stack
2https://key4hep.github.io/key4hep-doc/spack-build-instructions/README.html

4

https://key4hep.github.io/key4hep-doc/spack-build-instructions/README.html

GMP Wrapper configuration and running

Configuring and running the wrapper is done as in Gaudi, through a Python file:

• An algorithm list is filled with wrapped Marlin Processors.
• Processors parameters are defined for each instance, defining the Marlin processor
to load and list of parameters and values

• Converter for Marlin XML configuration files exists

On algorithm initialization of a Marlin Processor, MARLIN_DLL environment variable is used
to load the necessary libraries.

5

GMP configuration example

1 digiVxd = MarlinProcessorWrapper("VXDBarrelDigitiser")

2 digiVxd.OutputLevel = DEBUG

3 digiVxd.ProcessorType = "DDPlanarDigiProcessor"

4 digiVxd.Parameters = [

5 "SubDetectorName", "Vertex", END_TAG,

6 "IsStrip", "false", END_TAG,

7 "ResolutionU", "0.003", "0.003", "0.003", "0.003", "0.003", "0.003", END_TAG,

8 "ResolutionV", "0.003", "0.003", "0.003", "0.003", "0.003", "0.003", END_TAG,

9 "SimTrackHitCollectionName", "VertexBarrelCollection", END_TAG,

10 "SimTrkHitRelCollection", "VXDTrackerHitRelations", END_TAG,

11 "TrackerHitCollectionName", "VXDTrackerHits", END_TAG,

12 "Verbosity" , "DEBUG", END_TAG,]

13 algList.append(digiVxd)

6

Testing

Added testing with ctest:

• Simple test that runs some Marlin Processors: AidaProcessor -> InitDD4hep ->
VXDBarrelDigitiser

• muon.slcio is used for input, without hits.
• Second test generates an input file with ddsim

• It runs a similar list of algorithms with actual hits
• Output checks for regex with INFO Application Manager Terminated successfully

ddsim \

--steeringFile $ILCSOFT/ClicPerformance/HEAD/clicConfig/clic_steer.py \

--inputFiles $ILCSOFT/ClicPerformance/HEAD/Tests/yyxyev_000.stdhep -N 4 \

--compactFile $ILCSOFT/lcgeo/HEAD/CLIC/compact/CLIC_o3_v14/CLIC_o3_v14.xml \

--outputFile $GMP_tests_DIR/inputFiles/testSimulation.slcio

7

CLIC reconstruction

It successfully computes the full CLIC reconstruction:

• The CLIC reconstruction computes a sequence that includes different Overlays,
Digitisers, reconstruction, tracker and vertex finding algorithms.

• Using the updated converter, clicReconstruction.xml can be translated to
clicReconstruction.py.

• The converter add all algorithms to the list, and leaves the configurable ones
commented.

8

Future directions

• Move from LCIO to EDM4HEP.
• Converter available in K4LCIOReader 3

• Replace wrapped Marlin Processors by actual Gaudi Algorithms.
• Benefit from the different functionalities Gaudi offers
• Use multi-threaded/functional Gaudi, for the future
• Seamlessly integrate for other users of Key4hep

• Start using it in real scenarios to test how resilient it is.
• How to approach the transition?

• Gradual conversion from Marlin Processors to Gaudi Algorithms
• Transition to EDM4hep, before Processors conversion?
• Conversions during runtime?

3https://github.com/ihep-sft-group/K4LCIOReader/blob/master/src/K4LCIOConverter.cc

9

https://github.com/ihep-sft-group/K4LCIOReader/blob/master/src/K4LCIOConverter.cc

