

Small Plastic Wastes in Soils: What Is Our Real Perception of the Problem?

Andrés Rodríguez-Seijo¹, Ruth Pereira²

¹CIIMAR-UP & Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal andres.seijo@fc.up.pt

²GreenUPorto - Sustainable Agrifood Production Research Centre, Departamento de Biologia, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 416 -007, Porto, Portugal <u>ruth.pereira@fc.up.pt</u>

LabRisk

Produção Agroalimentar Suste Centro de Investigação

ohm estarreja

Introduction

Microplastics everywhere

High amounts of microplastics have been found not just in the sea and on beaches, but also in rivers and soils around the world, demonstrating how pervasive this modern pollution is. Sources include leakage from landfills, plasticulture, littering, and sewage sludge. Data from (1).

Microplastics in soils? The forgotten environment

- The amount of plastic's release in land is estimated to be 4-23 times higher than the amount that goes to the oceans.
- The transference processes among environmental compartments are poorly studied.
- Only less than 15% of ISI WOS papers about environmental impacts of microplastics targeted soil and/or soil organisms (90% publications last 6 years)

Agricultural, industrial uses and landfills as source of plastics

- Landfills
- Greenhouse films and plastic mulch
- Microplastics from sewer sludges (waste treatment plants)...
- Packaging/transport/industrial wastes...

30-50% can be retained within soil system

Liu et al. 2018

Steinmetz et al. 2016

WHAT CAN YOU FIND IN THIS BOOK CHAPTER?

We do a short review about the microplastics on terrestrial ecosystems, with emphasis on how the presence of microplastics can affect the physical, chemical and biological properties of the soil, including ecotoxicology in the three main study groups: nematodes, springtails and earthworms.

Species testing Nematodes	Type of plastic polymer	Particle size	Doses	Exposure conditions (test media and time of exposure)	Observed endpoints	References
Caenorhabditis elegans (Maupas, 1900)	Fluorescently labelled PS	100–1000 nm	$100~\mu L$ suspension of $1.0\times10^9~m L^{-1}$ of 0.5 μm and $1.0\times10^8~m L^{-1}$ of 1.0 μm microspheres in S-basal buffer	Agar plates 30 min	Uptake and accumulation in the intestine and pharynx	Kiyama et al. (2012)
	PA, PE, PP, PVC Fluorescently labelled PS	~70 μm 0.1, 1.0 and 5.0 μm	MP suspension in K-medium (32 mM L ⁻¹ KCl, 51 mM L ⁻¹ NaCl) added to nematode growth medium at different concentrations (0.5, 1.0, 5.0 and 10.0 mg m ⁻²)	Agar-pad- ded slide 2 days	Inhibition of growth, survival and reproduction; decreased intestinal calcium levels, microplastic accu- mulation in the intestine, and oxi- dative stress (increased expression of Glutathione S-transferase 4)	Lei et al. (2018)
C. elegans	Nano-PS	50 and 200 nm	17.3 mg L^{-1} and 86.8 mg L^{-1}	Agar-pad- ded slide 1 day	Inhibition of locomotion and reproduction Induction of oxidative stress (ROS production) Changes in energy metabolism (reduction on TCA cycle interme- diates, lactic acid and glucose). Uptake and accumulation of nanoplastics in the intestine	Kim et al. (2019)
	TiO ₂ -Nano- PS	108.2 ± 4.5 nm	0.01, 0.1, or 1 μ g L ⁻¹ by 1% solid suspension in water	Agar-pad- ded slide 1 day	Inhibition of locomotion and induction of intestinal ROS production	Dong et al. (2018)

Table 1 An overview of the effects of nanoplastics/microplastics on nematodes

Table 2 An overview of the effect of nanoplastics/microplastics on springtails species

Species testing	Type of plastic polymer	Particle size	Doses	Exposure conditions (soil type and time of exposure)	Observed endpoints	References
Springtails						
Folsomia candida (Willem, 1902)	Urea-formal- dehyde and PET	<100 mm and 100–200 mm	2.5 mg of the <100 mm 5 mg of the 100–200 mm fraction	Direct exposure on petri dishes, without substrate 7 days	Ability to transport and distribute MP	Maaβ et al. (2017)
	PVC	80–250 μm	0 and 1 g MP kg ⁻¹ soil _{dw}	OECD artificial soil 56 days	Inhibition of growth and repro- duction Changes in gut microbiota and in the carbon and nitrogen elemental absorption	Zhu et al. (2018a)
	PVC	80–250 μm	5000 particles	Direct exposure on petri dishes. Without substrate 7 days	Transport and distribution of MP up to 9 cm	Zhu et al. (2018b)
Lobella sokamensis (Deharveng and Weiner, 1984)	PE and PS	0.47–0.53 µm, 27–32 µm, and 250–300 µm	Several concentra- tions (4-1000 mg kg ⁻¹)	LUFA soil type no. 2.2 <1 day	Inhibition of movement	Kim and An (2019)
Proisotoma minuta (Tullberg, 1871)	Urea-formal- dehyde and PET	<100 mm and 100–200 mm	2.5 mg of the <100 mm 5 mg of the 100–200 mm fraction	Direct exposure on petri dishes. Without substrate 7 days	Ability to transport and distribute MP	Maaβ et al. (2017)

MP microplastics, PET polyethylene terephthalate, PE polyethylene, PVC polyvinyl chloride, PS polystyrene

PA polyamides, PE polyethylene, PP polypropylene, PVC polyvinyl chloride, PS polystyrene. NanoPS nanopolystyrene, TCA cycle tricarboxylic acid cycle

WHAT CAN YOU FIND IN THIS BOOK CHAPTER?

We identified that it is necessary to increase the study on the biological properties of soil, especially on soil microbial activity and its role in nutrient cycles, which can negatively affect soil productivity as well as environmental quality.

Also, the introduction of new eco-friendly materials such as bioplastics opens up several questions about whether they are eco-friendly.

			Exposure conditions (soil type and time of		
Type of plastic	Particle size	Dose	exposure)	Observed endpoints	References
PAN fibres	3756 × 18 μm	0.05, 0.10, 0.20, 0.40% of soil _{dw}	Loamy sand soil 5 weeks	Inhibition of soil microbial activity through the assessment of FDA hydrolysis	de Souza Machado et al. (2018)
PA beads	15-20 µm diameter	0.25, 0.50, 1 and 2% of soil _{dw}			
PES fibres	$5000 \times 8 \mu m$	0.05, 0.10, 0.20, 0.40% of soil _{dw}		Inhibition of soil microbial activity through the assessment of FDA hydrolysis	
HDPE fragments	±643 μm	0.25, 0.50, 1 and 2% of soil _{dw}		No clear effect on soil microbial activity	
РР	<180 µm	0, 7 and 28% of soil _{dw}	Calcaric cambisol 7 and 30 days	Increased activity of phenol oxidase and FDA hydrolysis	Liu et al. (2017)
Plastic film mulch (PVC) + contaminated with phthalate acid esters	20 mm × 20 mm	0, 67.5 and 337.5 kg ha ⁻¹	Luvisol 60 days	Reduction of soil microbial C and N (measured by fumigation extraction method) Reduction of enzymatic activities (FDA and dehydrogenase activities) and func- tional diversity (community-level physi- ological profile)	Wang et al. (2016)
NanoPS	32.6 nm ± 11.9 nm	10, 100, and 1000 ng PS-NPs g ⁻¹ dry soil	Stagnic-Luvisol 28 days	Reduced microbial biomass carbon (measured by chloroform fumigation extraction) Inhibition of enzymatic activities (dehy- drogenases, leucine-aminopeptidase, 8-cellobiohydrolase, 8-glucosidase, alkaline-phosphatase enzyme activities)	Awet et al. (2018)

Table 4 An overview of the effect of nanoplastics/microplastics on soil microbial communities

FDA hydrolysis of fluorescein diacetate, PAN polyacrylic, PA polyamide, PES polyester, HDPE high-density polyethylene, PP polypropylene, NanoPS nanopolystyrene

Financial support

MATiSSe - Microplastics on AgriculTural SoilS: assessment of their impact on physical, chemical and biological soil properties. CNRS – OHM-Estarreja. OHM-E/2018/Proj.4

Microplastics in the environment: soil-water interactions and effects on soil properties. Fundação para a Ciência e a Tecnologia. **CEECIND/03794/2017**

This research was supported by national funds through FCT—Foundation for Science and Technology within the scope of **UIDB/04423/2020**, **UIDP/04423/2020** (CIIMAR) and **UIDB/05748/ 2020**, **UIDP/05748/2020** (GreenUPorto).

