
EESSI & CernVM-FS meeting

Sept 18th 2020

● Introductions (who’s who)

● EESSI in a nutshell

● CernVM-FS in EESSI + current status

● Building software for EESSI: goals & questions

● More questions

2

Outline:

● European Environment for Scientific Software Installations
(EESSI, pronounced as “easy”)

● Collaboration between different European partners in HPC community

● Goal: building a common scientific software stack for HPC systems & beyond

● Heavily inspired by work done by Compute Canada

● “Grass roots” project, fueled by a lack of time to do a proper job at installing
scientific software and the desire for collaborating on something useful
(+ having beers together)
○ => No dedicated funding/manpower yet

Quick introduction

4

Scope & goals

● Shared repository of (optimized!) scientific software installations

● Avoid duplicate work across HPC sites

● Uniform way of offering software to users, regardless of system they use

● Should work on any (common) *nix distribution and system architecture

○ From laptops and personal workstations to HPC clusters and cloud

○ Support for different CPUs, interconnects, GPUs, etc.

● Focus on performance, automation, testing, collaboration

5

High-level overview of the EESSI project

Software layer
applications + dependencies

Filesystem layer
distribution of the software stack

Compatibility layer
levelling the ground across *nix distros

host operating system (any Linux distribution)

Host OS
provides
network
& GPU
drivers,

resource
manager
(Slurm),

...

● Software should be optimized for specific system architectures (CPU, GPU)

● Impact on performance is often significant for scientific software

● Example: GROMACS

6

Keeping the P in HPC

GROMACS 2020

compiled with foss/2020a (GCC 9.3, FFTW 3.3.8)
EasyBuild v4.2.2

2x Intel Xeon Gold 6420 (Cascade Lake)
CentOS 7.8

36 threads (no MPI)

Test Case B from PRACE-UEABS
(https://repository.prace-ri.eu/git/UEABS/ueabs)

https://repository.prace-ri.eu/git/UEABS/ueabs

● Transport layer for software in the compatibility and software layers

● One subtree per system architecture (CPU, GPU)

○ Clients automatically use the best suited subtree based host CPU, GPU, ...

● Config repository for distributing configuration files

● Different repositories for testing and production (+ another for licensed software?)

○ Currently only one “pilot” repository

● Planning to use GEO API for finding the closest Stratum 1

7

CernVM-FS in EESSI

8

Current status: EESSI pilot repository

● Stratum-0 + one single Stratum-1 with CernVM-FS 2.7.4 (hosted at rug.nl)

● Singularity container for clients with CernVM-FS 2.7.2 (very easy to use)

● First version (2020.08) of pilot repository:

○ Only installations for Intel Haswell (but compatible with any (?) client OS!)

○ Toolchain: GCC 9.3.0 + Open MPI 4.0.3 + OpenBLAS 0.3.9 + FFTW 3.3.8

○ Software: Python, GROMACS, OpenFOAM, ParaView, … (+ all deps)

○ Easy to use init script to set up environment (hardcoded to intel/haswell)

○ Various known shortcomings (Open MPI config, $LD_LIBRARY_PATH, etc.)

● More details at https://eessi.github.io/docs/pilot

https://eessi.github.io/docs/pilot

.
└── cvmfs/
 ├── cvmfs-config.eessi-hpc.org
 └── pilot.eessi-hpc.org/
 └── 2020.08/
 ├── compat/
 │ ├── aarch64
 │ ├── ppc64le
 │ └── x86_64
 └── software/
 ├── aarch64
 ├── ppc64le
 └── x86_64

9

EESSI directory structure (pilot)

(see https://eessi.github.io/docs/pilot)

https://eessi.github.io/docs/pilot

.
└── cvmfs/
 ├── cvmfs-config.eessi-hpc.org
 └── pilot.eessi-hpc.org/
 └── 2020.08/
 ├── compat/
 │ ├── aarch64
 │ ├── ppc64le
 │ └── x86_64/
 │ ├── bin
 │ ├── etc
 │ ├── lib64
 │ ├── sbin
 │ └── usr
 └── software/
 ├── aarch64
 ├── ppc64le
 └── x86_64

10

EESSI directory structure (pilot)

(see https://eessi.github.io/docs/pilot)

https://eessi.github.io/docs/pilot

.
└── cvmfs/
 ├── cvmfs-config.eessi-hpc.org
 └── pilot.eessi-hpc.org/
 └── 2020.08/
 ├── compat
 └── software/
 ├── aarch64
 ├── ppc64le
 └── x86_64/
 ├── amd/
 │ └── zen2
 └── intel/
 ├── skylake
 └── haswell/
 ├── modules
 └── software/
 ├── GROMACS/
 │ └── 2020.1-foss-2020a-Python-3.8.2
 └── OpenFOAM/
 ├── 8-foss-2020a
 └── v2006-foss-2020a

11

EESSI directory structure (pilot)

(see https://eessi.github.io/docs/pilot)

https://eessi.github.io/docs/pilot

● Software must be optimized for specific system architectures (CPU, GPU)

● Easiest way is to use different build nodes for this

○ Other options (cross-compiling, using QEMU, …) are more cumbersome/slower

● Software must be installed in /cvmfs/... (no relocation)

● Build nodes will most likely be hosted at different sites (important w.r.t. trust/security)

● Ideally:
○ Easy to set up build nodes “on demand” (containers!)

○ Isolation from host OS (containers!)

○ No root privileges required for mounting /cvmfs or (illusion of) write access

○ Building/installing software is done before starting a transaction to publish software
12

EESSI build nodes

EESSI build nodes
(icons via https://w

w
w

.flaticon.com
/authors/sm

ashicons)

Stratum 0

Stratum 1

Squid proxy

(Zen2 - Rome)

(Cascade Lake)

(Haswell)

(Skylake X)

13

https://www.flaticon.com/authors/smashicons

● Publishing should be separate from building/installing software

○ Some installations take a (very) long time…

○ Installations may fail and may need to be restarted/fixed

● Publishing should be restricted to certain users / build nodes

○ Gateway - publisher approach

○ Ideally this can be done from the build nodes (without root privileges...)

● Future plan/hope: fully automated setup

○ Pull requests to EESSI GitHub repository to add software

○ Software installation + publishing is done automatically after review/approval

○ Powered by GitHub Actions? Build nodes produce RPMs to install to /cvmfs?

○ Experiences / suggestions? 14

Publishing software into EESSI repository

● Minimal Singularity container

(Base OS + CernVM-FS client + fuse-overlayfs)

● Mount CernVM-FS repos using singularity --fusemount

○ Mount software repo at /cvmfs_ro, use as overlay's lower dir

● Use fuse-overlayfs with --fusemount to make a writable overlay

○ Merged mountpoint for software repo at /cvmfs

○ Build/install software into overlay (in container)

○ Create tarball of installed software from overlay's upper dir

○ Ingest the new software on a publisher node (Stratum 0 for now)
15

Adding software: current approach (2020.08 pilot)

Questions related to build nodes

● Issue: only seems to work with ancient fuse-overlayfs versions

○ Weird "Operation not permitted errors" for cd, mkdir
○ https://github.com/containers/fuse-overlayfs/issues/232
○ https://groups.google.com/a/lbl.gov/g/singularity/c/2CobnkVUl0w

● Does cvmfs enter work in a similar way? Any suggestions?

○ Can/should we try using current CernVM-FS develop to play with this?

● More info on “cvmfs push” command (portal to directly push user payloads?)

● ETA for CernVM-FS 2.8? Do clients/server needs to upgrade in sync?

● How are Git branches managed vs future releases? (stable vs devel vs cvmfs-2.7)

16

https://github.com/containers/fuse-overlayfs/issues/232
https://groups.google.com/a/lbl.gov/g/singularity/c/2CobnkVUl0w

● Build environment should be fully isolated from host OS

● Only tools/libraries from EESSI compatibility layer should be leveraged

● Containers partially solve this: full control over OS + packages in build environment

● Also need to use compat layer as alternate “sysroot”

(--with-sysroot in GCC, etc.)

● Is there experience in CernVM-FS community on this?

17

Questions on build isolation

● Support for alien caches in CernVM-FS

○ Compute nodes with no internet access as clients

○ CernVM-FS only in Singularity container, not on host

○ Alien cache populated in container to fuse mounted GPFS dir

○ Works fine in serial, problems when using MPI (see issue):

“Failed to initialize loader socket”

● Will Azure blob support be included in next CernVM-FS release?

○ https://github.com/cvmfs/cvmfs/pull/2590

18

More questions

https://github.com/EESSI/filesystem-layer/issues/38
https://github.com/cvmfs/cvmfs/pull/2590

