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Intro: spinor helicity formalism

Spinor helicity formalism is a natural way in studying on-shell helicity
amplitudes of massless particles.

p2 = 0→ pαα̇ ≡ pµσ
µ
αα̇ = λαλ̃α̇ = |p〉[p| (1)

Under little group transformation, a massless particle with helicity h
transforms as

|h〉 → e2ihθ|h〉 (2)

which is represented through the transformtion of the spinors:

|p〉 → e−iθ|p〉, [p| → e iθ[p| (3)

Scattering amplitudes are then Lorentz-invariant functions of λ and λ̃ with
the correct little-group helicity weights:

M(ω−1λi , ωλ̃i ) = Πiω
2hiM(λi , λ̃i ) (4)
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Intro: spinor helicity formalism

Three point amplitudes:

M(h1, h2, h3) = g

{
〈12〉h3−h1−h2〈23〉h1−h2−h3〈31〉h2−h1−h3 ,

∑
i hi ≤ 0

[12]h1+h2−h3 [23]h2+h3−h1 [31]h1+h3−h2 ,
∑

i hi ≥ 0
(5)

In renormalizable theory with only dimensionless couplings:

[g ] = 0→
∑
i

hi = ±1 (6)

or the non-zero three point amplitudes are

M(ψ±, ψ±, φ),M(ψ+, ψ−,V±),M(φ, φ,V±) (7)
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Intro: Amplitude basis for EFTs

Enumerating high dimensional operators in a massless theory:

field φ ψα ψ̄α̇ Fαβ
1 F̄

α̇β̇

representation (0, 0) ( 1
2
, 0) (0, 1

2
) (1, 0) (0, 1)

helicity 0 1
2

− 1
2

1 -1

Table: Fields in irreducible representations of Lorentz group and the helicity of
outgoing particles they excite.

Lorentz invariance;
Remove total derivatives and EoM redundancy.

1Fµνσ
µ
αα̇σ

ν
ββ̇

= Fαβ ε̄α̇β̇ + F̄α̇β̇εαβ
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Intro: Amplitude basis for EFTs

The on-shell construction of the EFTs:

Using contact on-shell amplitudes as basic “building blocks” instead
of operators.

The size of the amplitude basis is exactly the same as that of the
operator basis!

Full amplitudes are constructed with these basic amplitudes from
unitarity.

Example:

OHB = H†HBµνBµν ;OHB̃ = H†HBµνB̃µν

OHB − iOHB̃ ↔M(B+,B+,Hα,H
†
α̇) = [12]2δαα̇

OHB + iOHB̃ ↔M(B−,B−,Hα,H
†
α̇) = 〈12〉2δαα̇ (8)
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Partial Wave Amplitude Basis

Scattering amplitudes are usually expressed with incoming and
outgoing multi-particle states with definite momentum.

We can also decompose the momentum eigenstate into angular
momentum eigenstate

⊗〈ΨN |ΨN〉j ≡ C j ,jz
N (P;ψi=1,...,N)δ(P −

∑
pi ). (9)

And decompose the amplitude into the “partial wave amplitude basis”
Bj .

AN→M ≡ ⊗〈ΨM |M|ΨN〉⊗ (10)

=
∑
j

j〈ΨM |M|ΨN〉j
∑
jz

C j ,jz
M (C j ,jz

N )∗ (11)

≡
∑
j ,a

Mj ,a(s)Bj ,aN→M , (12)

Minyuan Jiang (WIS) Selection Rules in Scattering Amplitudes 11/11/2020 7 / 20



Partial Wave Amplitude Basis

For amplitudes expressed with spinor helicity formalism, we derive
Pauli-Lubanski operator acting on function of spinors:

MI,αβ = i
∑

i∈I
(
λiα

∂

∂λβi
+ λiβ

∂
∂λαi

)
, (13)

M̃I,α̇β̇ = i
∑

i∈I
(
λ̃iα̇

∂

∂λ̃β̇i

+ λ̃i β̇
∂
∂λ̃α̇i

)
, (14)

Wαα̇ = i
2

(
Pαβ̇M̄

β̇
α̇ −M β

α Pβα̇

)
(15)

Partial wave amplitude basis at some specified channel are
eigenfunctions of the operator W 2:

W 2Bj = −P2j(j + 1)Bj (16)

Given some amplitude basis, we can obtain the partial wave amplitude
basis by diagonalizing W 2.
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Partial Wave Amplitude Basis

Examples: consider 2→ 2 scattering, acting W 2 to the following
amplitudes at (1, 2) channel

W 2〈12〉 = 0→ j = 0, (17)

W 2〈13〉〈23〉 = −2s12〈13〉〈23〉 → j = 1, (18)

W 2(s13 − s23) = −2s12(s13 − s23)→ j = 1. (19)

The point is that amplitudes directly generated by effective operators,
or amplitude basis, can be deposed into superposition of finite
number of “partial wave amplitude basis”.
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Anomalous dimension matrix at one loop

Considering a process that has a direct tree level contribution from an
operator Oi and one-loop contribution from another operator Oj

Ai ∼ ci (µ)− γij
1

16π2
cj(µ)(

1

2ε
+ logµ+ . . .), (20)

1
2ε + logµ come from the UV divergence of the one loop contribution.
Demanding the amplitude being independent of the scale µ:

dci (µ)

d logµ
=
∑
j

1

16π2
γijcj . (21)

OjAi ∼ Oi+
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Anomalous dimension matrix at one loop

Zeros in d = 6 γij and non-renormalization theorem:

Table describing the renormalization of the operators in the column by those in the row.
C. Cheung, C.H. Shen [arxiv:1505.01844]
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(Non)-renormalization from angular momentum

Not all zeros are explained! R. Alonso, E. Jenkins, A. Manohar, M. Trott

O1
lequ = (l̄ e)εjk(q̄u);O3

lequ = (l̄σµνe)εjk(q̄σµνu)

OeW = (l̄σµνe)τ IHW I
µν ;OeB = (l̄σµνe)HBµν ;OeH = H†H(l̄ eH).
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(Non)-renormalization from angular momentum

From the angular momentum consideration, at (l , e) channel:

J = 0 : O1
lequ ∼ 〈12〉〈3′4′〉,OeH = H†H(l̄ eH) ∼ 〈12〉;

J = 1 : O3
lequ ∼ 〈13′〉〈24′〉,OeW /OeB ∼ 〈13〉〈23〉 (22)

Olequ ASM

q

u

q

u
l−

e− W−

H

Olequ ASM

q

u

q

u
l−

e− H

H†

H

Figure: Contribution from Olequ to the running of OeW and OeH

.
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(Non)-renormalization from angular momentum

The other dim-6 example: H4D2 → ψ2H2D

OH� = H†H�(H†H),OHD = (H†DµH)∗(H†DµH);

O1
Hq = (H†i

←→
D µH)(q̄γµq),OHu = (H†i

←→
D µH)(ūγµu)...(J = 1, I = 0)

O3
Hl = (H†i

←→
D µτ

aH)(l̄γµτ al),O3
Hq = (H†i

←→
D µτ

aH)(q̄γµτ aq)...(J = 1, I = 1)

H4D2 ASM

H†β̇

Hβ

Hα

H†α̇ ψ+

ψ−

Figure: Contribution from H4D2 to the running of ψ2H2D

.
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(Non)-renormalization from angular momentum

M(Hα,H†α̇,Hβ,H†β̇) = 2CH�(s12δ
αα̇δββ̇ + s23δ

αβ̇δβα̇)

+ CHD(s12δ
αβ̇δβα̇ + s23δ

αα̇δββ̇)

Decompose into s channel angular momentum and isospin eigenfunctions:
s12 for j = 0 and s13 − s23 for j = 1; T 1 = δαα̇δββ̇,T 3 = 1

2 (σa)αα̇(σa)ββ̇.

M(Hα,H†α̇,Hβ,H†β̇) = [3CH�T
1 + (CHD − CH�)T 3]s12

+ [(2CH� + 2CHD)T 1 + 2CH�T
3](s13 − s23).

then make the right prediction!
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(Non)-renormalization from angular momentum: dim-6

Channels j = 0 j = 1/2 j = 1

F+F+ F 2φ2(2, 6)

F+ψ+ Fψ2φ(2, 6)

F+φ Fψ2φ(2, 6),

F 2φ2(2, 6)

ψ+ψ+ ψ4(2, 6),

ψ2ψ̄2(4, 4),

ψ2φ3(4, 6)

ψ4(2, 6),

Fψ2φ(2, 6)

ψ+ψ− ψψ̄φ2D(4, 4),

ψ2ψ̄2(4, 4)

ψ+φ ψ2φ3(4, 6),

Fψ2φ(2, 6),

ψψ̄φ2D(4, 4)

φφ φ4D2(4, 4),

ψ2φ3(4, 6),

φ6(6, 6)

ψψ̄φ2D(4, 4),

φ4D2(4, 4)

Table: Dimension 6 operators classified by their angular momentum in the
specified channel. Numbers in the bracket are the (anti-)holomorphic weights.
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Vanishing loops from angular momentum

Figure: One-loop diagram for 2→ N scattering in EFT. The solid rectangle on
the right hand side represents a contanct interaction.

We see that the external state connected to the effective operator at RHS
have limited j . If the state at LHS does not satisfy this constraint, this
amplitude vanish.
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Vanishing loops from angular momentum

For two particle with opposite helicity: j ≥ |∆h|
(In the CoM j ≥ jz = |∆h|)

φ4D2 ASM

+

−

For two identical particle and same helicity: j =even
(particle of odd spin can’t decay into identical particles with same helicity)

ψψ̄φ2D ASM

+

− +

+
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Vanishing loops from angular momentum

LHS (∆h) RHS Operators at RHS

F+F−

(2)
φφ φ4(0), φ4D2(0,1), φ4D4(0,1,2), ψψ̄φ2D(1),

ψψ̄φ2D3(1,2)

ψ+ψ− ψψ̄φ2D3(1), ψψ̄φ2D3(1,2), ψ̄2ψ2(1),

ψ̄2ψ2D2(1,2)

F+F+ F 2φ2(0), F 2φ2D2(0,1), F 2ψψ̄D(1)

F+ψ−

(3/2)
ψ−φ ψψ̄φ2D(1/2), ψψ̄φ2D3(1/2,3/2)

F+ψ+ Fψ2φ(1/2), Fψ2φD2(1/2,3/2)

F+φ (1) ψ±ψ± ψ̄2ψ2(0),ψ4(0,1), ψ̄2ψ2D2(0,1),ψ4D2(0,1,2)

ψ+ψ−

(1)
F±F± F 2φ2(0),F 2φ2D2(0,1), F 2F̄ 2(0), F 4(0,1,2)

φφ F 2φ2(0), F 2φ2D2(0,1)

Table: Vanishing one-loop amplitudes from contribution of specific operators.
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Summary and outlook

Summary:

The multi-particle states from an effective operator usually have
limited angular momentum.

The amplitude basis with definite angular momentum can be obtained
using W 2.

Angular momentum conservation tells us non-trivial information in
EFTs.

Outlook:

massive case; higher loops...

Calculate anomalous dimension with unitarity method combined with
partial wave expansion. P. Baratella, C. Fernandez, B. Harling, A. Pomarol
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