The g-2 experiment at Fermilab

Becky Chislett Israeli Joint Particle Physics Seminar 12th May 2021

Introduction

The Standard Model provides an excellent explanation of most experimental data currently available but still leaves many unanswered questions

 $E = mc^2$

Magnetic Moments

The magnetic moment determines how something interacts with a magnetic field

The muon has an intrinsic magnetic moment that is coupled to its spin via the gyromagnetic ratio *g*:

 a_{μ}

When placed in a magnetic field this causes the spin to precess at a frequency determined by g

 $\frac{y-2}{2}$

uniform magnetic field

Precision

The g-2 experiment at Fermilab aims to measure the anomalous magnetic moment of the muon to a precision of 140 ppb

The BNL E821 measurement had an uncertainty of 540 ppb or 2.4ppm

The first result from the Fermilab experiment is on a dataset of a similar size ~10 billion μ^+

The Standard Model Contributions

Theoretical Contributions

All Standard model particles contribute to the theoretical prediction

Theory Summary

^LUCL

Muon g-2 theory initiative recommended result:

 $\Delta a_{\mu} = 279(76) \times 10^{-11} \rightarrow 2.39(0.65) \text{ ppm}$

Results in 3.7 σ discrepancy when compared to BNL measurement.

The muon has a mass advantage

$$\left(\frac{m_{\mu}}{m_{e}}\right)^{2} \approx 44,000$$

????

 μ, e

Muons at Fermilab

~ 10,000µ⁺ (from 10¹² p) at 3.1 GeV every 10 ms
(g-2): ⅓ of proton cycles, neutrino expts: ⅔
Extra 900m of instrumented beamlines

Lower instantaneous rate but larger integrated rate than BNL

The Road to Data Taking

UCL

Run-1 data taking started Feb. 2018

Magnet Shimming

Magnetic field uniformity 3 times better than the goal (BNL)

Muon Production

UCL

A proton beam is hit into a pion production target and the muons from the pion decays are collected

We get a naturally polarised muon beam from the physics of the pion decays

Beam Injection

Kicker Magnets

[•]UCL

Beam Focussing

Focus the muons vertically

Aluminium electrodes cover ~43% of total circumference

Calorimeters

[•]UCL

Tracking Detectors

Measurement Principle

 Measure difference between spin precession and cyclotron frequencies

$$g = 2, \ \omega_a = 0$$

 $g \neq 2, \ \omega_a \propto a_\mu$

$$\omega_a = \omega_s - \omega_c = a_\mu \frac{eB}{mc}$$

Measurement Details

The experiment actually measures two frequencies

Measuring ω_a

High energy e⁺ preferentially emitted in direction of muon spin

Simply count the number above an energy threshold vs time

Wiggle Plot

20

***|**|(

Fitting for ω_a

I C

Beam Corrections

•

The beam has a small vertical component which is focused using electrostatic quadrulpoles, but this introduces extra terms

$$\vec{\omega}_a = \frac{e}{mc} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \vec{\beta} \times \vec{E} - a_\mu \left(\frac{\gamma}{\gamma + 1} \right) \left(\vec{\beta} \cdot \vec{B} \right) \vec{\beta} \right]$$

We can minimise the first by choosing γ = 29.3 to give p_u = 3.1GeV, the magic momentum

For a 1.45T field, this sets the radius of the ring to 7.11m

However we now have 2 corrections to make to a_u because:

Not all muons are at the 'magic' momentum of 3.1GeV $\epsilon_{-off}^{field} C_E = \frac{\Delta \omega_a}{\omega_a}$

Vertical momentum component aligned with B field

 $\operatorname{Pitch}_{concection} C_p = \frac{\Delta \omega_a}{\omega_a}$ Both corrections depend on the quadrupole field strength, and are < 0.5ppm

Î

Beam Measurements

The tracking detectors measure the movements of the beam over time from the decay

Muons oscillate radially and vertically at different frequencies, according to the quadrupole strength

UCI

Run-1 Specific Issue

- The beam oscillations were observed to change frequency over time in the fill
- Found to be due to 2/32 faulty resistors in the quads

Run-1 Specific Issue

- The beam oscillations were observed to change frequency over time in the fill
- Found to be due to 2/32 faulty resistors in the quads

Magnetic Field Measurement

The g-2 Magnet

C-shaped magnet with vertical field (1.45T)

Tiny changes in the magnet geometry driven by temperature changes cause the magnet to drift over time

Monitor using pulsed NMR

[•]UCL

The Trolley Measurements

The field is measured using an in vacuum trolley with 17 NMR probes which drives around the ring every ~3 days

Creates a field map at ~8000 azimuthal locations

Between trolley runs fixed probes outside the storage region monitor the drift

UCL

Dipole

(m1

Dipole

 $^{-1}$

-2

0.9 0.6 ď 0.3

0.0

-0.3 문

-0.6

Extracting the Field Distribution

Extract terms from a multipole (m) expansion of B in r and θ :

$$B \approx B_y = A_0 + \sum_{n=1}^{\infty} \left(\frac{r}{r_0}\right)^n \left(A_n \cos(n\theta) + B_n \sin(n\theta)\right)$$

Field Interpolation

The fixed probes are used to interpolate the field between trolley runs

The fixed probes take data continuously

The data is calibrated by the book ending trolley runs (due to changes in the higher order terms)

Leads to a tracking error uncertainty (22 – 43 ppb)

Field Calibration

Calibration (Plunging) probe, placed inside ring and referenced to each trolley probe

Checked against spherical water sample to get absolute number

Cross checked with He3 sample, with different systematic uncertainties

Overall calibration uncertainty ~35ppb

spherical water

To obtain the field experience by the muons, the magnetic field distribution as a function of time must be weighted by:

- The number of muons as a function of time, N(t)
- The beam distribution as a function of time

UCI

Corrections

Field Transients

- Largest uncertainties come from "fast transient" fields generated by the pulsed systems (kickers and quads)
- Muons experience a field change which the fixed probes do not see (due to shielding)
- Effects were measured separately during dedicated measurement campaigns.

- Field change caused by residual field after kicker pulse. Muons
- present from $30\mu s$ to $700\mu s$ after the kick (fit region)
- Kicker correction: -27 (37) ppb

UC

E-field Correction

~0

$$\vec{\omega}_{a} = \frac{e}{mc} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \vec{\beta} \times \vec{E} - a_{\mu} \left(\frac{\gamma}{\gamma + 1} \right) \left(\vec{\beta} \cdot \vec{B} \right) \vec{\beta} \right]$$

~0.1% spread in momentum in the ring
 of stored muons depends on *p*
Fourier analysis to determine equilibrium positions

$$\vec{\omega}_a = \frac{e}{mc} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \vec{\beta} \times \vec{E} - a_\mu \left(\frac{\gamma}{\gamma + 1} \right) \left(\vec{\beta} \cdot \vec{B} \right) \vec{\beta} \right]$$

- Component of momentum parallel to field due to focusing
- Use tracking detectors to measure the vertical width of the beam

$$C_p = \frac{n}{2} \frac{\langle y^2 \rangle}{R_0^2} = \frac{n}{4} \frac{\langle A^2 \rangle}{R_0^2}$$

Muon Loss

Spin momentum correlation from delivery ring

Low mom. muons are lost faster than high mom. at early times

$$\frac{d\varphi_0}{dt} = \frac{d\varphi_0}{d\langle p \rangle} \frac{d\langle p \rangle}{dt}$$

- Lost muons have a slightly different phase w.r.t the ensemble, which causes a change in phase vs time
- Reduced from Run-2 onwards

UCI

1/5 low

1/5 high

300

350

Time [µs]

Phase Correction

- Focusing strength of the quadrupoles changed during fill
- The non-uniform acceptance of the calorimeters causes the average phase to change during the fill

UC

 Damaged resistors (Run-1 only) enhanced this effect

$$\mathcal{R}'_{\mu} = \frac{\omega_a}{\tilde{\omega}'_p(T_r)} = \frac{f_{\text{clock}} \ \omega_a^m \left(1 + C_e + C_p + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \ \langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle \left(1 + B_k + B_q\right)}$$

Clock Blinding

- The clock is hardware blinded to have a frequency of (40 ± ε) MHz
- Only 2 people outside of the collaboration set and know the number
- Blinding offset was ± 25 ppm (approx ×10 BNL-SM difference)

my very modest contribution to today's exciting muon g-2 result: a random number, 39997844, used for blinding the analysis

Do you own an iOS or Android device? Check out our app!

39998525

39998301

Random Integer Generator

Here are your random numbers:

-7 39997844 39998370 39998425 39998250

Timestamp: 2018-02-26 16:32:22 UTC

Unblinded Result

UC

Unblinded Result

UC

Interpretation

^AUCL

LHC evading SUSY Tweaked Higgs extensions ...

Aside : Muon EDM

The g-2 experiment at Fermilab can also look for a potential muon EDM

Fundamental particles can also have an EDM defined by an equation similar to the MDM:

$$\vec{d} = \eta \frac{Qe}{2mc} \vec{s}$$
 $\vec{\mu} = g \frac{e}{2mc} \vec{s}$

UCL

The power of EDM measurements has recently been demonstrated by the latest electron EDM measurement

Provides an additional source of CP violation

Aside : Muon EDM

[•]UCL

If an EDM is present the spin equation is modified to:

Dominant term

An EDM tilts the precession plane towards the centre of the ring

Vertical oscillation (π/2 out of phase) Expect tilt of ~mrad for d_µ ~10⁻¹⁹ An EDM also increases the precession frequency

- The analysis of the Run-1 data produced a result with 460 ppb precision
- 4.2σ tension with the theoretical prediction
- There is a lot more data to analyse - expect a factor 2 improvement for Run-2/3 analysis

Last update: 2021-04-11 03:30 ; Total = 10.39 (xBNL)

Thank you!

FNAL Main: <u>Phys.Rev.Lett.</u> 126 (2021) 141801
FNAL ω_a: <u>Phys.Rev.D</u> 103 (2021) 072002
FNAL Field: <u>Phys.Rev.A</u> 103 (2021) 042208
FNAL Beam Dynamics: <u>Phys.Rev.Accel.Beams</u> 24 (2021) 044002