

Attempt at Estimating Archival Bandwidth Needs

Frank Wuerthwein UCSD/SDSC DOMA Access Meeting September 29th 2020

Disclaimers

- This is a very crude first attempt at estimating needs.
- It is meant as something for people to think about in preparation for the storage workshop in November.
- It does not include any overprovisioning to arrive at deployed hardware needs to be able to provide the usable bandwidth targets described here.

Outline of Talk

- Summarize the logic for the needs estimates for ATLAS and CMS
- From the sum of the two experiment's global numbers calculate the bandwidth for each T1.

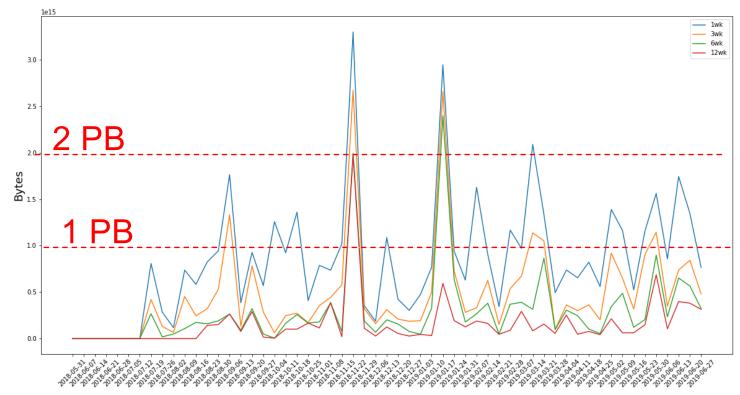
- Take the current data volume estimates.
 - Make some arbitrary but reasonable assumption about how the archive will be used, and assess which use cases are likely dominating the needed IO bandwidth.
 - => This leads to a total IO aggregate need summed up over all T1s.
- Take the 2020 Tape pledge % for each T1
- Calculate IO per T1 based on the % pledge of 2020

CMS Volume estimate

- HLT output rate = 7.5kHz
- Total # of RAW events per year = 56 Billions
- Total # of MC events per year = 64 Billions
- RAW evt size = 6.5 MB => 364PB/y
- AOD evt size = 2 MB => 240PB/y RAW+MC
- MINI evt size = 0.25 MB => 30PB/y RAW+MC
- NANO evt size = 0.002 MB => 0.24PB/y RAW+MC

- Assume it gets done in 100 days
- Coming off the archive: 364PB/100 days = 44 GB/sec ~ 400Gbit/sec
- Going into the archive: 112PB/100 days = 14 GB/sec ~ 130Gbit/sec
- Rounded up generously ~ 550Gbit/sec total

CMS RAW from T0


- 6.5MB x 7.5kHz ~ 50GB/sec = 400 Gbit/sec
- 6.5M seconds/year data taking = 6.5/31.5 = 20% duty cycle over the year.
- You can pick your number based on how much backlog you are comfortable with.
 - I've picked 50% => 200Gbit/sec archival bandwidth to manage RAW data coming from CERN T0.

CMS MINI production from

- Assume it gets done in 100 days
- Coming off the archive: 240PB/100 days = 30GB/sec ~ 240Gbit/sec
- Going into archive: 30PB/100 days ~ 30Gbit/sec
- Rounded up generously ~ 300Gbit/sec

Analyse use data for 1-12 week retention of unused AOD. Plot recalled data/week as a function of time for each algorithm.

For 3 week retention and a max of 1PB tape recall capacity per week, we expect processing delays of up to 3 weeks.

CMS Tape recall for analysis

 1PB per week on Run2 => ~ 23PB/week HL-LHC to stay within the same processing delays.

- 23 = ratio in AOD volume/year HL-LHC/Run2

• 23PB/week = 40GB/sec = 320Gbit/sec

Will use 250Gbit/sec as planning number. Assumes that we do better in HL-LHC than Run2 with avoiding reliance on AOD

CMS Total

- RAW processing ~ 550Gbit/sec
- RAW from T0 ~ 200 Gbit/sec
- MINI production ~ 0
 It falls in the shadow of the RAW processing
- AOD recall for Analysis ~ 250Gbit/sec
 It better be small otherwise we are in trouble.
- Total ~ 1000 Gbit/sec aggregate archival bandwidth needs across all CMS T1s.

ATLAS Scenario 1

Scenario 1 : Maximise TAPE usage

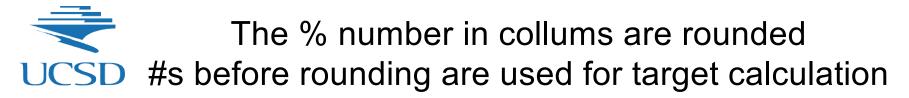
RAW/prompt AOD CERN \rightarrow T1 (Apr-Dec) 9 months Write RAW : 53 GB/s Write AOD : 10 GB/s Total written : 300 + 35 PB		RAW reprocessing (Jan-Mar) 100 days Staging : 35 GB/s Write data AOD : 8 GB/s Total written : 70 PB			
G4 simulation (MC) → HITS G4 : Write 6 GB/s (Total written : 200 PB) AOD : Write 6 GB/s (Total written : 200 PB)					
MC reco + Derivation MC + data AOD : Staging HITS + data AOD : 22	Derivation MC+data AOD : Staging AOD : 14 GB/s	Derivation MC+data AOD : Staging AOD : 14 GB/s			
Staging HITS+ data AOD : 23 + 2 GB/s Write MC AOD : 12 GB/s	Total				
Staging : 25 GB/s Write : 87	GB/s	Staging:49 GB/s Write: 20 GB/s			

Scenario 2 : Minimise TAPE usage

Data taking period (Apr-Dec) RAW/prompt AOD CERN \rightarrow T1 9 months Write RAW : 53 GB/s No AOD exported (1 copy already at CERN) Total written T1: 300 PB		1 S V	RAW reprocessing (Jan-Mar) 100 days Staging : 35 GB/s Write data AOD : 4 GB/s Total written T1: 35 PB			
G4 simulation (MC) → HITS G4 : Write 6 GB/s (Total written : 200 PB) AOD : Write 6 GB/s (Total written : 200 PB)						
	Derivation MC+data AOD : All on DISK	Derivation MC+data AOD : All on DISK		MC reco + Derivation MC + data :		
Tota		Total		Staging 12 GB/s		
Staging : 0 GB/s Write : 65 GB/s			Staging:47 GB/s Write: 4 GB/s	6		

Some Comparisons

- ATLAS
 - Write RAW = 424Gbps
 - RAW Processing = 344Gbps
 - Higher data tier
 processing = 296 Gbps
- ATLAS sustained peak needs ~ 880 Gbps


- CMS
 - Write RAW = 200Gbps
 - RAW processing = 550Gbps
 - Higher data tier
 processing = 300 Gbps
- CMS sustained peak needs ~ 750-1000 Gbps

No attempt made yet to understand and reconcile differences

Now lets fit it into a spreadsheet

T1	%ATLAS	%CMS	Archival Target in Gbps
CA-TRIUMF	10	0	86
DE-KIT	12	11	222
ES-PIC	4	5	80
FR-CCIN2P3	13	10	209
IT-INFN-CNAF	9	15	225
NDGF	6	0	49
NL-T1	7	0	63
NRC-KI-T1	3	0	22
UK-T1-RAL	15	9	219
RU-JINR-T1	0	5	52
US-T1-BNL	23	0	199
US-FNAL-CMS	0	45	454
	0	0	0
0	0	0	0
Sum	100	100	1880

Comments & Questions

Backup

ATLAS Estimates (1)

Inputs

- Assumptions :
 - RAW reprocessing do not overlap with data taking period (RAW export)
 - HI should not require more bandwidth
 - Very rough assumption for extrapolation in 9 years : Will evolve with Data Caroussel experience

• RAW + AOD/DAOD (prompt processing) export CERN \rightarrow T1s (Table 8 of CDR)

- RAW : 53 GB/s (during stable beam)
- AOD/DAOD : 10 GB/s
- RAW staging at T0+T1s for reprocessing
 - T0 TAPE will be used but considered as safety margin
 - 300 PB in 100 days : 35 GB/s
- Write data AOD (35 PB) at T1s (output of RAW reprocessing)
 - Scenario 1 (higher TAPE load) :
 - 2 copies \rightarrow 70 PB in 100 days : 8 GB/s
 - Scenario 2 (lower TAPE load) :
 - 1 copy \rightarrow 35 PB in 100 days : 4 GB/s

Inputs : First simulation campaign

- HITS (after G4) produced over year
 - 1 copy on TAPE
 - \circ (50 B evts fullsim + 150 B evts fastsim) * 1 MB/evt = 200 PB \rightarrow 6 GB/s
- Write MC AOD (200 PB produced spread over 1 year) at T1s :
 - 100 % on TAPE : 6 GB/s

ATLAS Estimates (3)

Inputs : MC reco and derivation with existing input

• Reprocess G4 HITS + derivation MC + derivation AOD

- Scenario 1 :
 - Process 100 % HITS in 100 days : Staging : 23 GB/s (No staging of MC AOD)
 - Write 50%/50% MC AOD on TAPE/DISK : Write 12 GB/s (MC).
 - Derivation 100 % data AOD in 100 days (35 PB with 50% on TAPE) : Staging 2 GB/s
- Scenario 2 :
 - Process : 50 % HITS in 100 days during shutdown : 12 GB/s (No staging of MC AOD)
 - All data AOD processed from DISK copy
 - Write all on DISK

• Read data+MC AOD for derivation (No MC reco campaign) :

- 3 repro of 100 days each year : ~Permanent derivation activity
- Most often reprocessed (benchmark, important channel) on DISK : 50 %
- Scenario 1 : 100% of AOD data+MC
 - **50%** read from TAPE \rightarrow staging 14 GB/s
- Scenario 2 : 50% of AOD data+MC
 - All accessed from DISK