

GNN Tracking

Graph Construction and Network Architectures

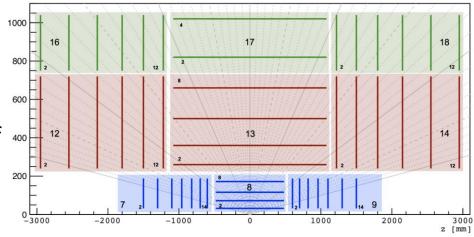
IRIS-HEP Topical Meeting 10/21/20

Markus Atkinson

Gage DeZoort, Javier Duarte, Lindsey Gray, Aneesh Heintz, Isobel Ojalvo, Mark Neubauer, Vesal Razavimaleki, and Savannah Thais

Basic Procedure / Outline

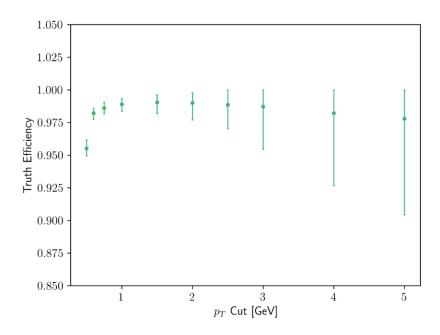
- Pre-Processing
 - Construct the graph using hit coordinates as nodes
 - Truth level Pt cuts applied at this stage to control size of graphs, remove noise hits
 - Edges are selected based on geometric cuts
 - Data Augmentation techniques applied
- Process with GNN to get all edge probabilities
 - Edge Classifiers
 - Interaction Network
- Post-Processing
 - Tracking type algorithms
 - Calculate Track Parameters directly
 - Use for Tracklet seeding

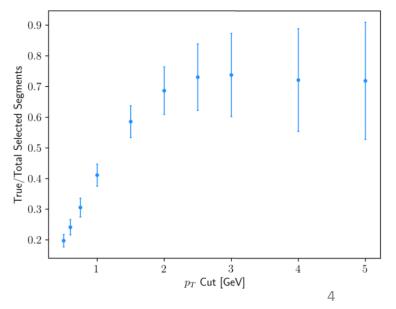


- Work shown here uses <u>TrackML dataset</u>
 - Open, experiment agnostic
 - Has 'score' functionality to compare models
- Many places to improve/innovate
 - Other ways of augmenting the data?
 - Exploration of many GNN architectures with varying parameters
 - Tracking work is very preliminary

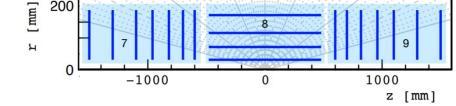
Graph Construction

- Contribute to <u>ExaTrkX</u> code base (numpy)
 - Forms edges between nodes of adjacent layers
 - Added Endcaps
 - Added some data augmentation abilities
 - Fully converted into a pytorch-geometric <u>datset</u>
- Useful quantities
 - True edge efficiency true edges in graph / all possible true edges
 - True edge purity true edges in graph / all edges in graph





Graph Construction - Node Cuts

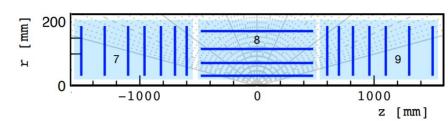


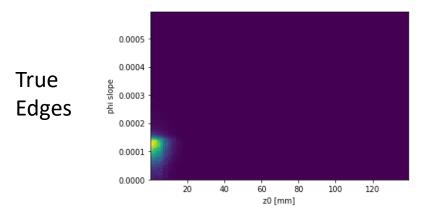
- Layers Selected
 - Studies focused on the Inner Detector (4 barrel layers, 7 endcap layers per side)
- Eta based cuts : [-5, 5]
- Truth based cuts
 - Remove noise hits (To do: add the ability to keep these)
 - p_T based cuts: $p_T > 2.0$ GeV
 - Remove duplicate hits within same layer from same particle
 - There is an option to disable this for a mode that allows edges within same layer

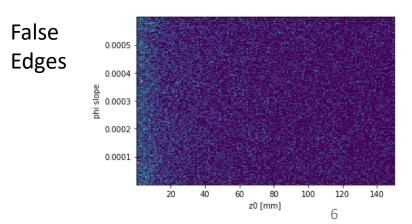
Graph Construction - Edge Cuts

Two Modes

- Layer Pairs: Allow adjacent layers to connect
- Layer Pairs plus: Also allow edges within same layer
- Geometric cuts
 - $\Delta \phi / \Delta r < .000262$
 - $z_0 < 15$ cm
 - Remove edges that intersect intermediate barrel layers when connecting barrel to endcap

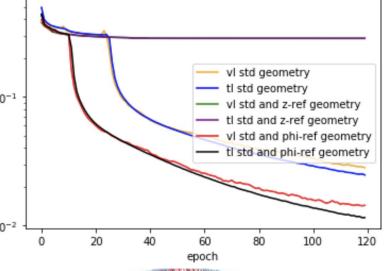


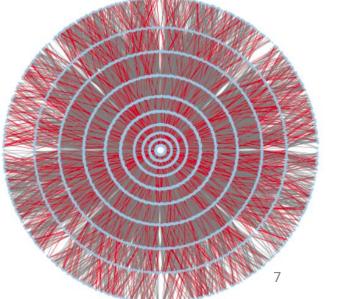




Graph Construction – Data Augmentation

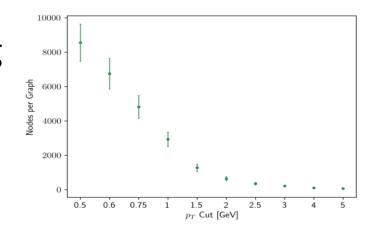
- Augmenting the graph in various ways can drastically affect the training
- Tricks that help in various ways
 - Segmenting the graph to reduce size (subsections of the detector)
 - Special care needed in post processing to handle stitching things back together
 - Making a copy of the graph reflected through phi
 - This flips the handedness of the tracks, effectively making the charge conjugate version of the graph
- Failed attempts
 - Reflecting across z (magnetic field symmetry not preserved)
 - Coordinate transforms Cylindrical/Spherical Inversions

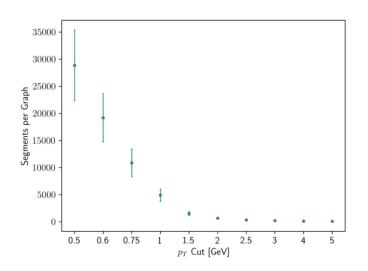




Graph Construction – Graph Size

- In addition to trying to maximize edge and tracking efficiencies, there is also concern about the size of the graphs
- Segmenting the graphs
- Can we get similar results using alternating layers to reduce edge/node count?
- Do we need all the endcap layers?

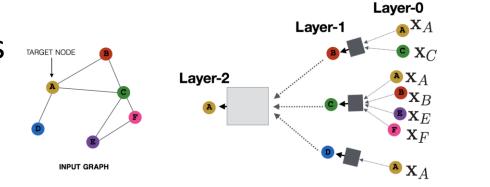


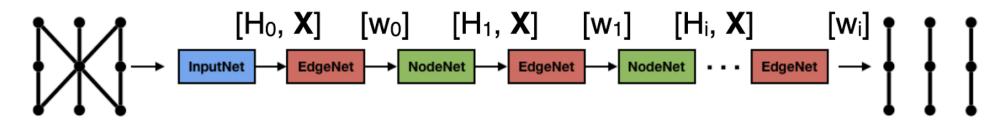


Edge Classifier 1

 A Graph Module combines an edge network and a node network

- Entire architecture is feed forward
- Parameters: 101249
- 6 Graph Modules, 128 Hidden Dimensions
- BCE Loss and .001 learning rate





Edge Classifier 2

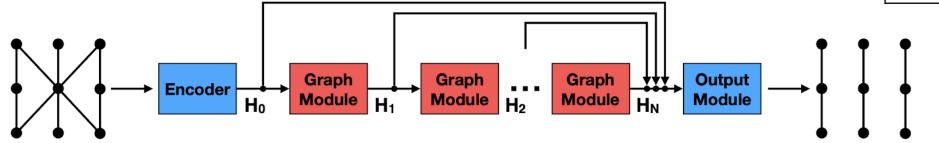
- Graph modules are recursively connected
 - Allows aggregation of progressively more distant information
 - Weights can be shared across modules
- Parameters: 259075
- 6 Graph Modules, with 64 hidden dimensions
- NLL Loss and .0001 learning rate

2 × 10⁻¹ 1 10⁻¹ 2 × 10⁻¹ 0 20 40 60 80 100 120 epoch

Confusion Matrix

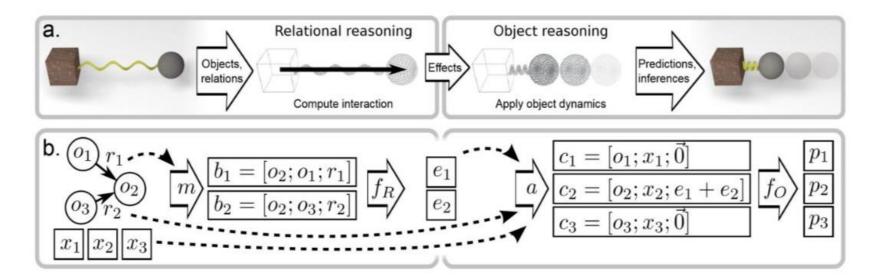
.999581	.001837	
.000419	.998173	

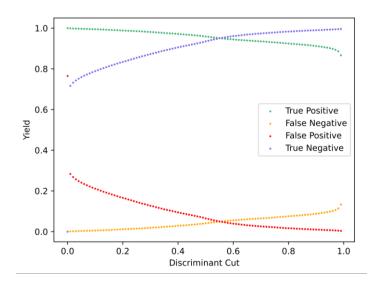
11

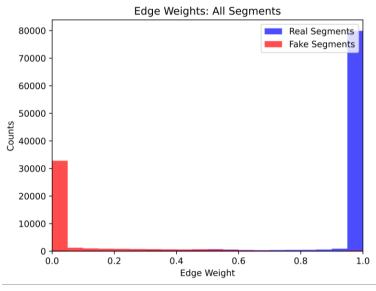


Interaction Networks

- Applies relational and object models in stages to infer abstract interactions and object dynamics
 - Relation and object models are FCNs
 - Total of 89400 parameters
 - 95% Edge efficiency







Confusion Matrix: [[0.948 0.052] (cut=0.60) [0.053 0.947]]

Tracking – Union Find

- Using the inferred edges, nodes are grouped into subsets of connected unions
- Track candidates are defined as any union with ≥ 3 nodes
- Truth information for the entire detector is packaged with the graph that is used for track matching algorithms. (Requires pytorch-geometric dataset)

Match Criteria

All hits within same union came from same particle

Tracking – Union Find

Track Efficiency

Matched Track Candidates / Total Truth Tracks

Fake Fraction

Unmatched Tracks Candidates / Total Track Candidates

Run on Target Graphs

- Allows us to quantify the best case scenario (perfect GNN inference)
- Tracking Efficiency Maximum achievable with the current graph construction cuts
- Fake Fraction = 0

Run on Inferenced Graphs

- Tracking Efficiency for the particular GNN architecture and graph cuts
- Fake Fraction for that particular GNN Architecture

Calculate Tracking Efficiency Ratio

- Inference/Target
- This is the fraction of unions that were inferenced correctly

Tracking – Union Find Studies

# Endcap Layers (per side)	Input Truth Graphs Track Efficiency	GNN Inferenced Graphs Track Efficiency	Ratio	Fake Fraction
0	.593322+037292	.592970+037357	.999407	.000599+001796
1	.689928+028164	.689625+028255	.999561	.000442+001327
2	.762234+026424	.761882+026793	.999538	.000478+001435
3	.877614+018441	.876589+018062	.998832	.001157+002528
4	.900148+020160	.900148+020160	1	0
5	.933451+016345	.933148+016031	.999675	.000317+000952
6	.940490+017478	.939564+016709	.999015	.000967+002043
7	.946276+019355	.942320+019378	.995819	.001010+002090

How many endcap layers are needed?

Tracking – Union Find Studies

	Input Truth Graphs Track Efficiency	GNN Inferenced Graphs Track Efficiency	Ratio	Fake Fraction
Inner Barrel	.593322+037292	.592970+037357	.999407	.000599+001796
Full Barrel	.633789+037619	.627592+037330	.990222	.006133+005702
Alternating Barrel	.567440+028849	.559576+027741	.986141	.008883+010534
Alt Barrel (doublets)	.615333+037120	.606547+035055	.985721	.008579+009785

How much efficiency is gained by including the outer barrel? Remove every other layer?

Current best tracking results, need to do full p_T scan

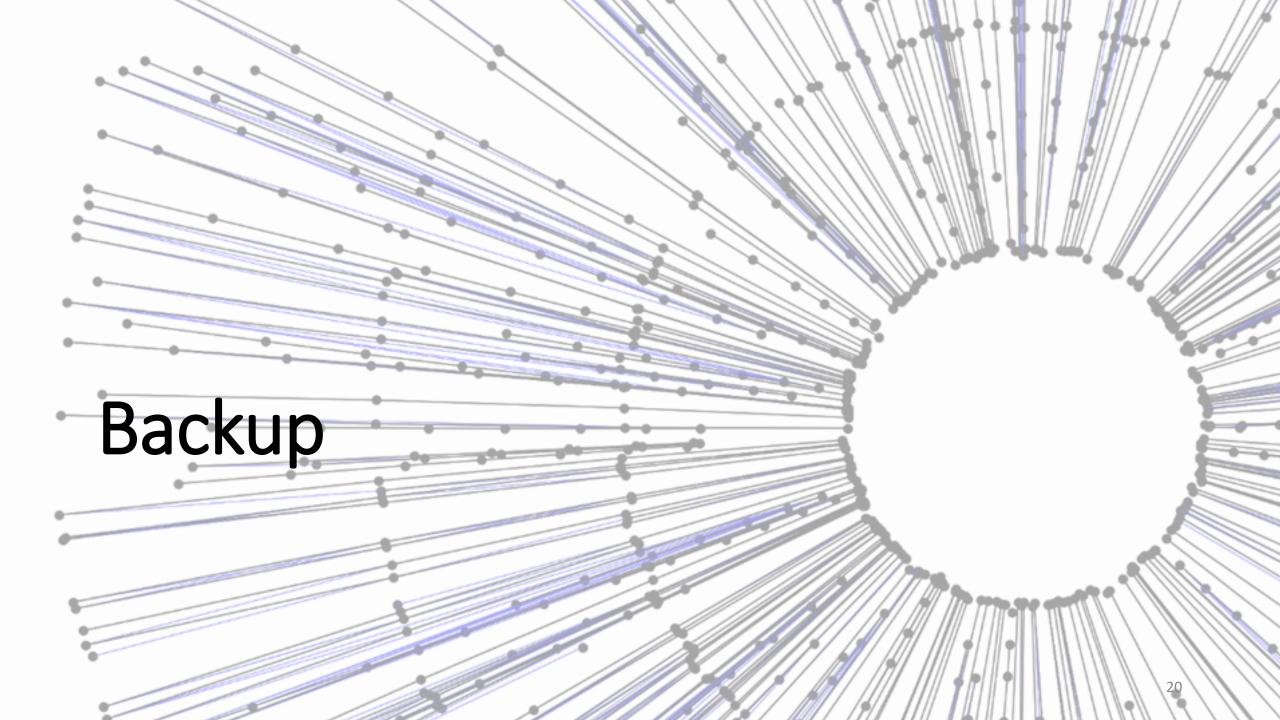
	Input Truth Graphs Track Efficiency	GNN Inferenced Graphs Track Efficiency	Ratio	Fake Fraction
pT > 2.0 GeV	.946276+019355	.942320+019378	.995819	.001010+002090
pT > 1.0 GeV	.949068+008017	.940589+010110	.991065	.006211+002105

Ongoing Work

- Converting all code into a single useable framework (pytorch geometric)
 - Graph Construction, Edge Classifier 2, and UnionFind code are finished
 - Edge Classifier 1, partially converted
- Continue Optimizing cuts
 - Explore additional cuts
- Improve Existing Architectures
 - Explore additional Architectures
- Additional data augmentation
 - Transforms, embeddings
- Additional Track building algorithms

Summary

- GNNs are a promising method for HL-LHC tracking
 - Geometric data representation with variable number of inputs
- A variety of architectures have been shown to work
 - Focus is now on refining and optimizing
- Graph construction (and embedding) is critical to performance
 - On-going optimization studies
- Working towards accelerating graph algorithms on FPGAs for use at HL-LHC
 - Next Talk

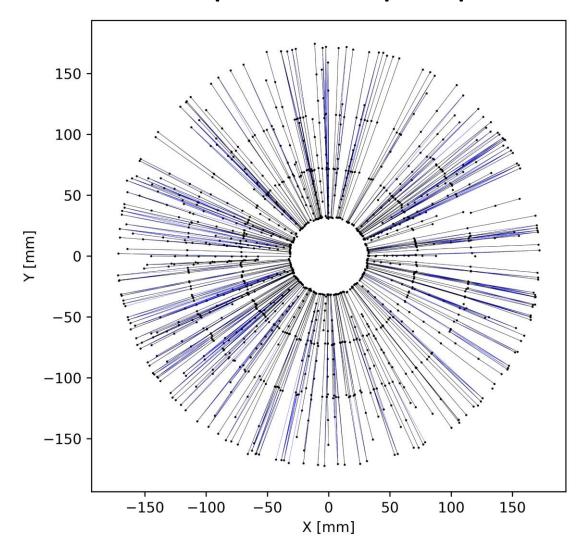


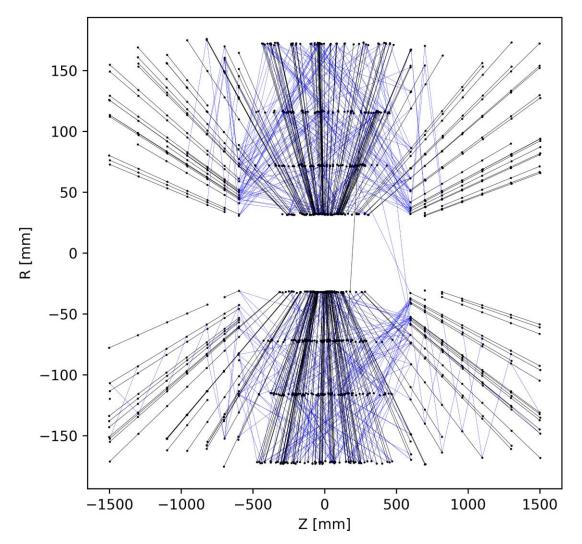
Tracking – DBScan

Graph Construction – Other Algorithms

- Other algorithms being explored
 - Layer Pairs +
 - Dynamic kNN graphs
 - Learned clustering
 - DBScan in eta-phi space

Example Graph pT > 2.0 GeV





Tracking – Union Find