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Introduction to the Monte Carlo simulation
of radiation transport

- The transport equation

- The Monte Carlo method

- Statistical uncertainties

- Advantages and limitations of the method



The radiation transport problem
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Radiation
source

Propagation
in matter

Detection

Photons,

Leptons (e±, μ±, τ±, ν),

Hadrons (n, p, π, Σ,…),

Ions (Z,A),

Radioactive sources

Cosmic rays,

Colliding particle beams,

Synchrotron radiation,

…

“Monoenergetic”/Spectral

Energies: 

- keV-PeV, 

- down to thermal energies for neutrons.

Arbitrary geometry,

Various bodies,

materials, compounds.

Radiation-matter interaction,

Secondary particles,

Particle shower,

Material activation,

Magnetic and electric fields…

Measure/estimate/score:

- Energy-angle particle spectra,

- Deposited energy,

- Material damage,

- Biological effects,

- Radioactive inventories…
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Terminology
• Radiation field: an ensemble of particles, possibly of different species (𝛄,e±,p,n,…), 

each at a position r moving with energy E along a direction Ω=(θ,ɸ) with polar and 

azimuthal angles θ and ɸ.

• Every particle species can undergo a series of interaction mechanisms, each 

characterised by a differential cross section:

• The integrated cross section σ (area) measures the likelihood of the interaction.

• Consider a medium with N scattering centers per unit volume.

• Nσ gives the probability of interaction per unit path length, AKA

macroscopic cross section.

• 1/(Nσ) gives the mean free path or scattering 

length between consecutive interactions.
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The transport equation
• Let n0(r,E,Ω,t=0) be the particle density at the radiation source with energy E, moving 

in a direction Ω.

• The transport equation determines the radiation field (consisting of several particle 

species i, with different energies E, and different directions Ω) at another position r at 

a later time t by looking at the particle balance in a small volume V (with surface S) 

around r:

Notation: Ω’’ is a direction such that scattering angles Ω’ bring it to Ω.
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(unscattered particles)

(particles scattered out)

(particles scattered in)

(production of secondaries)

(source)



Solution strategies
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• Transport equation to be solved for an arbitrary source density n0(r,E,Ω,t), an arbitrary 

geometry, and realistic interaction cross sections. 

• Solution strategies:

• Analytical: only for restricted geometries and restricted interaction models.

• Spectral: exploit symmetries and expand in appropriate basis functions. Only for restricted cases.

• Numerical quadrature integration: general, but inefficient for high-dimensional integrals.

• Monte Carlo method: general, efficient, can treat arbitrary radiation fields and geometries.

• Monte Carlo is a stochastic method, exploiting random numbers to:

• Simulate an ensemble of particle histories governed by known interaction cross sections.

• Track them in arbitrary geometries.

• Accumulate contribution of each track to statistical estimator of the desired physical observables.



The origins
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Probability and statistics toolkit for 
Monte Carlo simulations of radiation transport
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Random variables
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• A random variable X describes the outcome of a process whose value we cannot predict 
with certainty, but nevertheless we know:

• Its possible values.

• How likely each value is, governed by the probability density function (PDF), p(x).

• Properties of p(x):

• Positive defined: p(x)>=0 for all x 

• Unit-normalized:  ∫dx p(x) = 1

• Integral gives probability: ∫a
b dx p(x) = P(a<x<b)

• The expectation value                                          measures the average value of X.

• The variance σ2 measures the square deviation from <X>.

• The standard deviation σ measures the average deviation from <X>.



Relevant examples
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Uniform distribution

Basic PDF for sampling PDF from which particle steps are sampled

(derivation in additional slides)

Appears in Central Limit 

Theorem below

Exponential Gaussian



Generation of homogeneously distributed random numbers
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• For reasons of reproducibility, we use pseudo-random numbers: uniformly distributed 

numbers between 0 and 1 obtained from a deterministic algorithm (not random!) which pass 

all tests of randomness.

• Needs one/several seed values, X1, from which the sequence starts: X2,X3,X4,…

• Different seed values yield different random number sequences.

• E.g.: linear congruence Xn+1 = mod(aXn+c,m), with carefully chosen a,c,m

• The random number generator used in FLUKA is RM64, based on an algorithm by G. 

Marsaglia et al. Stat. Probabil. Lett. 66 183-187 (2004) and 8 35-39 (1990).

• Based on a lagged Fibonacci generator: Xn+1=mod(Xn-p@Xn-q,m), where @ is +,-,…,  p=97, 

q=33.

• The state of the random-number generator requires 97 values.



The state of the random-number generator in FLUKA
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• At the end of each FLUKA cycle you will see files called ran*

• These files contain the values of the 97 seeds of RM64

in hexadecimal:

• The initial seed is controlled by the RANDOMIZe card

• In Flair (more in the next lecture):



Sampling from arbitrary distributions

• In Monte Carlo we sample: step lengths, event type, energy losses, deflections…

• Sampling: generation of random values according to a given distribution.

• Fundamental problem: we know how to sample uniformly distributed values, but 

how do we sample from arbitrary distributions?

• There’s a whole array of sampling 

techniques:

• Inverse sampling

• Rejection sampling

• …
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Basic Monte Carlo simulation algorithm
Loop over np primary events:

1. Initialize source particle position and momentum.

2. If particle is in vacuum, advance it to next material boundary.

3. Determine total interaction cross section at present energy and material: σ

4. Evaluate the mean free path to the next interaction: λ =1/(Nσ)

5. Sample step length to next interaction from p(s) = (1/λ) e-s/λ

6. Decide nature of interaction:   Pi = σi / σ,   i=1,2,…,n

7. Sample energy loss (and/or change of direction) from differential cross section for the 
selected interaction mechanism i. Update energy and direction of motion.

8. Add generated secondary particles to the stack if any.

9. Score contribution of the track/event to the desired physical observables.

10. Go to 2 unless:

- Particle energy drops below user preset threshold  (see lecture on Friday)

- Particle exits the geometry
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Example: 100-MeV proton beam on water

Introduction to Monte Carlo 14

10 simulated proton trajectories in water (Ep=100 MeV):

Protons (red)
Electrons (green)



Statistical uncertainties

- Results from Monte Carlo simulations are affected by statistical uncertainty

- How does it depend on the number of simulated primary particles?
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Example: 100-MeV proton beam on water
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Example: 100-MeV proton beam on water
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Example: 100-MeV proton beam on water
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• Results from MC simulations are affected

by statistical uncertainty

• The larger the number of primaries, 

the smaller the error bars.



A numerical experiment
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• Imagine a source emitting particles with a flat energy distribution which deposit all 

their energy in a detector. 

• Let the detector/estimator measure the average deposited energy:

• What can one say about the estimated <E>?

• It is a random variable

• As such, it follows a certain distribution.     

• Which one? It depends on the number of events.

p(E)

0 1

Detector
<E>

Source

E



Distribution of <E> if source emits N=1 particle
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Distribution of <E> if source emits N=2 particles
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Distribution of <E> if source emits N=3 particles
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Distribution of <E> if source emits N=10 particles
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Distribution of <E>

• For sufficiently large number of contributions, 
the estimate mean <E> follows a Gaussian!

• The standard deviation (~width) of this 
Gaussian is a measure of the statistical 
uncertainty when estimating <E>.

• The standard deviation (statistical 
uncertainty) decreases with the number of 
contributions N

• We now check how the statistical uncertainty 
drops with N
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Standard deviation

• For a very large number of samples the detector would 

yield the estimated mean <E>=1/2 with sigma=0.

• Statistical uncertainty decreases with the number of 

contributions N as 1/sqrt(N).
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Central Limit Theorem

• In the numerical experiment above, the “detector” plays the role of the expectation value of 
any physical observable estimated à la Monte Carlo.

• If the estimator receives a sufficiently large number of contributions N, the distribution of its 
expectation value tends to a Gaussian centered around the true expectation value, with 
standard deviation that goes like 1/sqrt(N). That is, the statistical uncertainty of a MC 
estimate reduces as 1/sqrt(N) with the number of primary events.

• This is essentially the Central Limit Theorem.

• Note that:

• When doing a Monte Carlo simulation, quoting a result without a measure of the statistical uncertainty 
is meaningless.

• Quoting a result obtained with a low number of contributions is dangerous: the distribution of the 
mean may still be far from the Gaussian centered around the actual expectation value!
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Single-history vs batch statistics

• In FLUKA, primaries are grouped in cycles.

• When you initiate a FLUKA run, you will indicate:

• The number N of cycles.

• The number ni of primaries per cycle

• The variance of a scored observable X is evaluated via

where:

• n is the total number of primaries, 

• xi is the average of the i-th cycle:

• In the limit N=n and ni=1 the expression applies to single-history statistics.

• NOTE: if you run just one cycle (N=1), the above expression cannot be evaluated and FLUKA will 
return 100% uncertainty.
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Recommendations

• Ensure you have 5-10 cycles of comparable size

• Remember that the variance itself is a random variable. E.g., runs with the same 
number of primaries but different random seeds will give different values of the 
variance. The larger the number of primaries, the smaller the difference (MC results 
for different seeds converge to the same value).

• It is wise to examine how convergence is attained: verify that error bars drop with 
1/sqrt(N). Sudden/isolated spikes indicate poor sampling in some corner of phase 
space (see Biasing lecture).

• It is often a good idea to plot 2D and 3D distributions. The human eye is a good tool 
for judging statistical convergence of 2D/3D estimators!
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Statistical uncertainty

Statistical errors, due to sampling (in)efficiency

Relative error Quality of Tally (from an old version of the MCNP Manual)

50 to 100% Garbage

20 to 50% Factor of a few

10 to 20% Questionable

< 10% Generally reliable

• The MCNP guideline is based on experience, not on a mathematical proof. But it has been 
generally confirmed also working with other codes.

• Small penetrations and cracks in a geometry are very difficult to handle by MC, because 
the “detector” is too small and too few non-zero contributions can be sampled, even by 
biasing.
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Assumptions, limitations, and
sources of uncertainty

Introduction to Monte Carlo 30



Assumptions and limitations

• Materials are static, homogeneous, and isotropic.

• Radiation transport is treated as a Markovian process: the fate of a particle depends 

only on its actual state, and not on its history.

• Material properties are not affected by previous histories.

• Particles follow trajectories and interact with individual atoms/electrons/nuclei.

• A general order-of-magnitude measure: the particle’s de Broglie wavelength must be small 

compared to typical interatomic distances (Angstroem).
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Validity of the trajectory picture
• De Broglie wavelength:

where EK is the particle’s kinetic energy, m0 is 

its rest mass, h is the Planck constant, and c

is the speed of light.

• Typical interatomic distances are in the order 

of ~Angstroem.

• E.g.: MC simulation of electron transport at 

energies much below 100 eV is questionable.

• The assumption of scattering on single target 

puts a lower energy bound on applicability of 

MC
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Systematic uncertainties

• We have discussed statistical uncertainties above.

• That’s only part of the uncertainty in the results of any MC simulation. The rest are 

systematic uncertainties, due to:

• Adopted physics models: different codes are based on different physics models. Some models are 

better than others. Some models are better in a certain energy range. Model quality is best shown by 

benchmarks at the microscopic level (e.g. thin targets)

• Transport algorithm: due to imperfect algorithms, e.g., energy deposited  in the middle of a step*, 

inaccurate path length correction for multiple scattering*, missing correction for cross section and 

dE/dx change over a step*, etc. Algorithm quality is best shown by benchmarks at the macroscopic 

level (thick targets, complex geometries)

• Cross-section data uncertainty: an error of 10% in the absorption cross  section can lead to an error 

of a factor 2.8 in the effectiveness of a thick shielding wall (10 attenuation lengths). Results can never 

be better than allowed by available experimental data

* Not in FLUKA!
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Systematic errors due to incomplete knowledge

• Systematic errors due to incomplete knowledge:

• material composition not always well known. E.g. concrete/soil composition (how much water 

content? Can be critical)

• beam losses: most of the time these can only be guessed. Close interaction with engineers and 

designers is needed.

• presence of additional material, not well defined (cables, supports...)

• Is it worth to do a very detailed simulation when some parameters are unknown or badly known? 

• Systematic errors due to simplification:

• Geometries that cannot be reproduced exactly (or would require too much effort)

• Air contains humidity and pollutants, has a density variable with pressure 
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Errors, bugs, mistakes

• Monte Carlo codes can contain bugs:

• Physics bugs

• Programming bugs (as in any other software, of course)

• User mistakes:

• mistyping the input: Flair is excellent at checking, but the final responsibility is on the user

• error in user code: use the built-in features as much as possible!

• wrong units

• wrong normalization: quite common

• unfair biasing: energy/space cuts cannot be avoided, but must be done with much care
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Summary

• Radiation transport is governed by the transport equation, a non-trivial integro-

differential equation.

• The Monte Carlo method (exploiting pseudo-random numbers to simulate 

stochastic processes) is an expedient way to solve it for arbitrary radiation sources 

and material geometries.

• The pseudo-random number generator is at the core of the algorithm.

• Basic flow of a MC simulation.

• Results of MC simulations are affected by statistical uncertainty.

• The statistical uncertainty scales with the number of primary particles N as 1/sqrt(N)

• FLUKA expects a number of cycles and a number of primaries/cycle

• Basic assumptions and limitations
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Additional material
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The mean free path and its distribution
• Let n particles per unit time and surface impinge normally on a thin material slab of width ds 

with a density of N scattering centers per unit volume, each having a cross sectional area 

σ.

• Number of particles that interacted:   dn = n Nσ ds.

• The interaction probability in ds:        dn/n = N σ ds

• Let p(s) be the distribution of path lengths to the next interaction.

• The probability that the next interaction is within ds of s is
p(s) =[ 1 - ∫0

sds’ p(s’) ] (N σ) = ∫s
inf p(s’) (N σ) ds’

• The solution of this diff eq is
p(s) = (N σ) e-s(N σ)

• Thus the path length to the next interaction follows an 
exponential distribution. The average distance to the next interaction is:

<s> = 1/(N σ) = λ, 
i.e., we recover the expression of the mean free path given above.
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