## Exercise: Thresholds

Aim of the exercise:

- Examine the effect of setting different threshold values
- Further interaction with the FLUKA manual
- Practice the use of preprocessor directives
- Strengthen plotting skills



## Input file

- 10 MeV electron beam
- Circular beam with 2 mm radius
- 5-mm radius target split in three layers, each $50 \mu \mathrm{~m}$ thick
- Set to $\mathrm{H}_{2} \mathrm{O}-\mathrm{Pb}-\mathrm{Al}$
- Thin layers require high tracking precision. Thus, we set
- DEFAULT PRECISIOn (should already be there)
- Notice that three preprocessor variables are defined
- HI-THR, LOW-THR, VLOW-THR
- USRBIN scoring DOSE over the entire target
- $1 \mu \mathrm{~m}$ bins in $\mathrm{z}, 1 \mu \mathrm{~m}$ bins in R , unformatted unit 55


## Add EMFCUT cards

- Set both production and transport thresholds in all materials
- Hint: when specifying the range of materials/regions, use @LASTMAT/@LASTREG as needed to refer to the last material or region, respectively
- Threshold cases:
\#if HI-THR
photons: 1 keV , electrons: 1 MeV kinetic energy, FUDGEM=1
\#elif LOW-THR
photons: 1 keV
\#elif VLOW-THR
photons: 1 keV \#endif
- Note that the electron threshold is 100 keV in case of PRECISIOn
- Reminder: stopping powers and ranges for electrons, protons, and He ions are available on the NIST webpage: https://physics.nist.gov/PhysRefData/Star/Text/intro.html


## Run



Run three simulations corresponding to high, low, or very low threshold values, with 5 cycles $\times 100000$ primaries for each case The three runs are already set up in the Flair project
Should take less than $\sim 5$ minutes on a reasonable machine.

## Plot and compare the results



The plots are already set up in the Flair project

## Result : Compare thresholds



Exercise: Thresholds


