

Advanced source definitions

Colliding beams Synchrotron radiation Cosmic rays Multiple beam spots USRBIN source

Beginner online training, Fall 2020

Input card: **SPECSOUR**

Note that any arbitrary source term can be defined in the source.f routine (not covered here)

The **SPECSOUR** card allows to use pre-defined special sources that cannot be described by the simple cards like: **BEAM**, **BEAMPOS** and **BEAMAXES**

Special source types:

- Colliding beams
- Synchrotron radiation
- Cosmic rays
- Multiple beam spots

USRBIN source

Available in the new FLUKA release

Colliding beams

Type: **PPSOURCE**, **CROSSASY** or **CROSSSYM**

Input card: **SPECSOUR – PPSOURCE**

SPECSOUR	Type: PPSOURCE 🔻	,		
	P1x:	P1y:	P1z:	
	P2x:	P2y:	P2z:	
	σχ:	σу:	σz:	
limit-σ:	Part: 🔻	A:	Z:	
σθC_1:	σ0_1:	σθC_2:	σ0_2:	
-	NonElastic: off v	Elastic: off v	EM dissociation: off v	

Simulates a collision between two beams:

- 1st beam: Hadrons (including protons and heavier nuclei)
- 2nd beam: Only proton or heavier nuclei

Two section of the card:

- **Top**: Beam momenta and directions of the two colliding beams
- Bottom: Volume of interaction, beam particles and divergences, physics interactions

Input card: **SPECSOUR – PPSOURCE**

Beam momentum and direction:

• Based on the Type, 3 different option

Type: **PPSOURCE**

A SPECSOUR	Type: PPSOURCE	V		
	P1x:	Ply:	P1z:	
	P2x:	P2y:	P2z:	

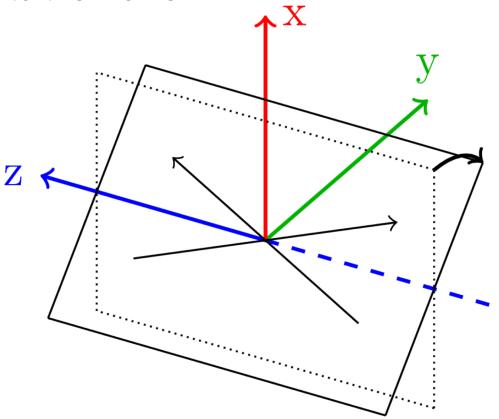
 Momentum and direction are defined with the x, y and z components of the total laboratory momentum of either beams [GeV/c]

Input card: SPECSOUR – CROSSASY Beam momentum and direction:			$\xrightarrow{X} \xrightarrow{X} \xrightarrow{Z}$
Type: CROSSASY			beam 1 beam 2
SPECSOUR	Type: CROSSASY ▼ P1lab: P2-lab:	Polar1: Polar2:	Azimuthal:
	12100.	101012.	

- P1lab, P2lab: Total laboratory momentum of beam 1 and 2, respectively [GeV/c]
- Polar1, Polar2: Polar angle between beam 1 (2) direction and positive (negative) z direction. [radians] (between: 0 ... π/2)
- Azimuthal: Azimuthal angle defining the crossing plane [degrees (!)]

Input card: SPECSOU	R – CROSSSYM		ĸ	X
Beam momentum and direction:				\overrightarrow{z} crossing angle
Type: CROSSSYM			beam 1	beam 2
SPECSOUR	Type: CROSSSYM v Plab:	, CrossAng/2:		Azimuthal:

- Plab: Total laboratory momentum of beam 1 and 2, respectively [GeV/c]
- CrossAng/2: Half of the crossing angle [radians] (between: 0 ... $\pi/2$)
- Azimuthal: Azimuthal angle defining the crossing plane [degrees (!)]


Crossing plane:

 The two beam direction define the crossing plane. In case of Type: CROSSASY and CROSSSYM the crossing plane is parallel to the z axis

Azimuth angle:

- Defines the rotation of the crossing plane around the z axis
 - 0°: **x-z** plane, towards positive **x** (*Default*)
 - 90°: y-z plane, towards positive y
 - 180°: **x-z** plane, towards negative **x**
 - 270°: y-z plane, towards negative y

Note: **BEAMAXES** card is disregarded

Input card: **SPECSOUR – PPSOURCE**

Volume of interaction:

	σχ:	σy:	σz:	
limit-σ:	Part: 🔻	A:	Z:	

- σx, σy, σz: for the Gaussian sampling of the interaction position around the interaction point, along the x, y and z axes [cm]
 Note that it is independent of the geometry region
- limit-σ: sampling limit, *in sigma*, applied along **x**, **y**, and **z axes**

Beam particles:

	σx:	σy:	σz:
limit-σ:	Part: 🔻	A:	Z:

- **Part**: Particle type of beam 1 *Default*: Particle defined on the **BEAM** card
- A, Z: Mass and atomic number of beam 2 Default: A=1, Z=1 (PROTON)

Input card: **SPECSOUR – PPSOURCE**

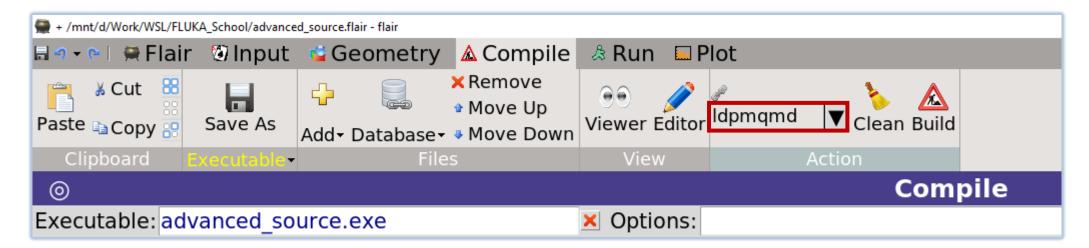
Divergences:

σθC_1: σ0_1: σθC_2: σ0_2:	
---------------------------	--

- σθC_1, σθC_2: Divergence in the crossing plane for beam 1 and beam 2 respectively [radians]
- **σO_1**, **σO_2**: Divergence in the orthogonal plane for beam 1 and beam 2 respectively [radians]

Physics interactions:

NonElastic: off v	Elastic: off v	EM dissociation: off v


- Select different physics interactions.
 Note: Elastic interactions are not available with heavy ions
- Default: Non elastic interaction, plus EM dissociation if enabled with a PHYSICS (EM-DISSO) card

Input card: **SPECSOUR – PPSOURCE**

Additional requirements:

• DPMJET must be linked by selecting the *Idpmqmd* linker on the *Compile* tab:

• A **PHYSICS** (LIMITS) card has to be present, to initialize DPMJET, with a value greater than the maximum nucleon centre-of-mass momentum [GeV/c]

Type: LIMITS ▼ Max.Pcms (pp):

PHYSICS

Input card: **SPECSOUR – CROSSSYM**

Example:

- LHC:
 - pp collision, 7 TeV, y-z plane (vertical crossing), 285 µrad crossing angle
 - Interaction volume: $\sigma x = \sigma y = 12 \mu m$, $\sigma z = 5 cm$
 - Divergence: 1.057e-2 mrad (both beams, both planes)
 - Non elastic interactions

SPECSOUR	Type: CROSSSYM 🔻		
	Plab: 7000.0	CrossAng/2: 142.5e-6	Azimuthal: 90.0
	σx: 12.0e-4	σy: 12.0e-4	σz: 5.0
limit-σ:	Part: PROTON V	A: 1	Z: 1
σθC_1: 1.057e-5	σ0_1: 1.057e-5	σθC_2: 1.057e-5	σ0_2: 1.057e-5
	NonElastic: On 🔻	Elastic: off v	EM dissociation: off v

Synchrotron radiation

Type: SYNC-RAD, SYNC-RDN, SYN-RAS or SYNC-RDS

Input card: SPECSOUR – SYNC-RAD

If a charged particle moves on a curved trajectory (due to a magnetic field), it emits synchrotron (photon) radiation

FLUKA can model the synchrotron radiation up to two circular arcs (or helical paths)

- Accounting for the emitted photon polarization
- Sampling the photon energy and angle

Note:

- The emitting charged particles are not simulated, the emitted photons are directly sampled as primary particles
- The **magnetic field**, if relevant for secondary particles transport, has to be declared via the **MGNFIELD** card and assigned to any magnetic region via the **ASSIGNMA** card

Input card: SPECSOUR – SYNC-RAD

A SPECSOUR	Type: SYNC-RAD 🔻	Part: 🔻		
	Z: 0	A: 0	lsomer: 0	
E/p: Momentum 🔻	p:	R/B: Radius ▼	R:	
Eγmin:	Bx:	By:	Length:	
	x2:	y2:	z2:	
	cosx2:	cosy2:		

Particle definition:

- **Part**: Emitting particle type, if not selected, a heavy ion can be specified with:
- Z (atomic), A (mass number), Isomer: Specify a heavy ion Default: ELECTRON (if no Part selected and no heavy ion specified)
- E/p: Defines the Momentum [GeV/c] or Energy [GeV] of the emitting particle

Note: The starting point and direction of the first arc, is defined on the **BEAMPOS** card, **BEAMAXES** card is disregarded

Input card: SPECSOUR – SYNC-RAD

A SPECSOUR	Type: SYNC-RAD 🔻	Part: 🔻		
	Z: 0	A: 0	lsomer: 0	
E/p: Momentum 🔻	p:	R/B: Radius 🔻	R:	
Eγmin:	Bx:	By:	Length:	
	x2:	y2:	z2:	
	cosx2:	cosy2:		

Arc definition and sampling limit:

- Length: Defines the length of both arcs [cm]
- Eγmin: Defines the minimum energy of the emitted photons [GeV]. *Default:* 100 eV

Second arc (*optional*):

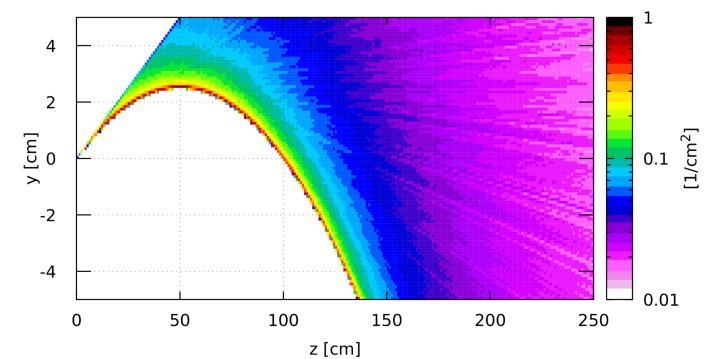
- x2, y2, z2: x, y and z coordinates of the starting point of arc two
- cosx2, cosy2: x and y components of the emitting particle direction versor at the beginning of arc two

Input card: SPECSOUR - SYNC-RAD

SPECSOUR	Type: SYNC-RAD 🔻	Part: 🔻		
	Z: 0	A: 0	lsomer: 0	
E/p: Momentum 🔻	p:	R/B: Radius ▼	R:	
Eγmin:	Bx:	By:	Length:	

Magnetic field definition:

- R/B: Defines the curvature Radius [cm] of the trajectory or the absolute value of the bending magnetic field (MagField) [T]
- **Bx**, **By**: x and y components of the magnetic field versor
- **Type**: Selects the sign of the z component of the magnetic field versor (Bz)
 - **SYNC-RAD**: Bz > 0 for both arc
 - **SYNC-RAS**: Bz > 0 for arc one and Bz < 0 for arc two
 - **SYNC-RDN**: Bz < 0 for both arc
 - **SYNC-RDS**: Bz < 0 for arc one and Bz > 0 for arc two



Input card: SPECSOUR – SYNC-RAD

Synchrotron radiation photon fluence

Example:

- 3 GeV/c electron
- 2 T magnetic field
- 150 cm arc length

Input card: SPECSOUR – SYNC-RAD

Normalization:

The results for the synchrotron radiation are per *emitted photon*

To normalize the result for one <u>emitting (charged) particle</u>, we need to look inside the output (*.out*) file

Normalization factor: actual arc length * linear density of photons above threshold

150 [cm] * 9.3061e-2 [1/cm]

<<< Synchrotron radiation source n. Emitting particle: ELECTRON P: Initial position : 0.0000000 Initial direction: 0.0000000	3.00000 GeV/c 0.0000000	0.0000000 0.99498744
Magnetic field: 2.0000000	0.000000	0.0000000 Т
Nominal curvature radius: 500.34	614 cm	
Nominal arc: 150.00000 cm		
Arc angle: 0.29979246 rad		
Actual curvature radius: 500.34	614 CM	
Actual arc: 150.00000 cm		
Transverse p_T: 3.00000 GeV/c	and gamma:	5870.85237
Critical energy: 0.0000119705 Ge	V	
Photon emission threshold :	1.00000000E-0	7 GeV
Photons >1 eV/nominal unit length:	0.11693748	cm^-1
Photons/unit length 1 eV - thres.:		2 cm^-1
Photons/unit length above thres.:		
Total energy/nominal unit length:	4.55537630E-07	GeV/cm
Energy/unit length below thresh.:		
Energy/unit length above thresh.:		

CM

Cosmic rays

Type: GCR-IONF, GCR-SPEC, GCR-ALLF, SPE-SPEC, SPE-2003, SPE-2005

Cosmic rays sources reaching Earth that can be simulated in FLUKA:

- Galactic Cosmic Rays
- Solar Particle Events

The FLUKA implementation:

- determines the spectrum and composition of cosmic rays at the local interstellar medium
- takes in to account the solar wind magnetic field and the resulting interaction with the inward flow of galactic cosmic rays from the local interstellar medium
- calculates the trajectories of cosmic rays through the Earth's geomagnetic field
- transports the surviving incident cosmic rays through the Earth's atmosphere to various depths.

The detailed discussion of the cosmic rays is beyond the scope of this lecture For further details please have a look on the FLUKA manual

A number of tools and packages have been developed for the FLUKA environment to simulate the production of secondary particles by primary cosmic rays interacting with the Earth's atmosphere:

- atmomat.cards: it contains the material definitions for the density profile of the US Standard Atmosphere
- atmogeo.cards: it contains an example of a 3D geometrical description of the Earth atmosphere
- atmloc.f: it prepares the description of the local atmosphere geometry with the atmospheric shells initialised by option GCR-SPE
- <iz>phi<MV>.spc: GCR All-Particle-Spectra for the iz_th ion species (iz=1,...,28), modulated for the solar activity corresponding to a Phi parameter <Mv> MegVolt. Phi=500 MV roughly corresponds to solar minimum, while Phi=1400 MV roughly corresponds to solar maximum.
- allnucok.dat: GCR All-Nucleon Spectra
- sep20jan2005.spc: spectra for the Solar Particle Event of Jan 20th, 2005
- sep28oct2003.spc: spectra for the Solar Particle Event of Oct 28th, 2008
- Data files are available in <fluka dir>/data/gcr/
- An example is available in <fluka dir>/examples/gcr/AllParticleExample/

Input card: SPECSOUR – GCR-IONF (All-particle flux)

Type: GCR-IONF ▼ #1: 28.0 #4: 30000.0	#2: 6.449E+08 #5: 1.75	#3: 0.3 #6: 500.0
#7: 2.0	#8: 11.4	#9:
#10:	#11:	#12:
#13:	#14:	#15:
#16:	#17:	#18:

What(1): Z-range (28 = read all *.spc files)

What(2): Spectra Injection Radius

```
What(3) & What(4): minimum & maximum energy (GeV)
```

What(5): Spectral index for sampling (below transition energy)

What(6): Transition energy for sampling (above it, sample from 1/E)

Continuation card

What(7): if 2.0, vertical geomagnetic cut-off read from What(2)

What(8): Vertical geomagnetic cut-off at central latitude

Input card: GCR-SPE (Initialises Galactic Cosmic Ray or Solar Particle Event calculations)

100 atm shells, dipole fi	eld, read	spectra fr	om zzphi0465.spc
S GCR-SPE Type: Spectra	,		
Field: naive dipole 🔻 Shells: 101	Radius:		
Equatorial Field: Dump shell: 0	Unit: 0	DateFi	le: phi0465

Type: Read all *.spc files

DateFile (SDUM): Read the corresponding data files (*.sur) for a given solar potential. These files contains the normalization factors for the standard 100 atmospheric shells!

Shells: if $101 \rightarrow 100$ atmospheric shells

Field: Dipole field

Multiple beam spots Type: BEAMSPOT

Input card: SPECSOUR – BEAMSPOT

Allows to define multiple beam spots

Can be used where the capabilities of the **BEAM**, **BEAMPOS**, and **BEAMAXES** are sufficient, but one than one beam is required, like radiotherapy.

	A SPECSOUR	Type: BEAMSPOT 🔻	# spots:	Sampling: Random 🔻
--	------------	------------------	----------	--------------------

- *#* spots: Number of defined beam spots, up to 15000
- Sampling: How primaries sampled between the individual beam spots
 - Random: The beam spots are sampled randomly, according to their weights
 - Sequentially weighted: The beam spots are sampled sequentially each with a number of primaries proportional to its weight
 - Sequentially equal: The beam spots are sampled sequentially, all with the same number of primaries, ignoring their weights

Beam spots are defined with **SPOTBEAM**, **SPOTPOS** and **SPOTDIR** cards

Input card: **SPOTBEAM**

SPOTBEAM spot_id	Beam: Momentum 🔻	p:	Part: 🔻	
	Z: 0	A: 0	lsomer: 0	
∆p: Flat ▼	Δр:	Spot Weight:		
Δφx: Flat ▼	Δφχ:	∆¢y: Flat ▼	Δφy:	

Spot definition:

- spot_id: ID number of the beam spot. Numbering has to be continuous, starting from 1 Note the unusual location of the input field
- **Spot weight**: Relative intensity of the beam spot

Particle type:

- **Part**: Spot's particle type. If not selected, a heavy ion can be specified with:
- Z (atomic), A (mass number), Isomer: Specify a heavy ion
 Default: Particle defined on the BEAM card (if no Part selected and no heavy ion specified)

Input card: **SPOTBEAM**

SPOTBEAM spot_id	Beam: Momentum 🔻	p:	Part: 🔻	
	Z: 0	A: 0	lsomer: 0	
∆p: Flat ▼	Δр:	Spot Weight:		
∆φx: Flat ▼	Δφχ:	∆φy: Flat ▼	Δφy:	

Momentum / energy:

• Beam: Defines the Momentum [GeV/c] or Energy [GeV] or the emitting particle Default: Momentum / energy defined on the BEAM card

Momentum distribution:

- Δ**p**: Defines the beam's momentum distribution as:
 - Flat: Full width of a rectangular momentum distribution centred at beam momentum [GeV/c]
 - Gaussian: FWHM of a Gaussian momentum distribution [GeV/c]

Default: 0.0 (!)

Input card: **SPOTBEAM**

SPOTBEAM spot_id	Beam: Momentum 🔻	p:	Part: 🔻	
	Z: 0	A: 0	lsomer: 0	
∆p: Flat ▼	Δр:	Spot Weight:		
∆φx: Flat ▼	Δφ×:	∆φy: Flat ▼	Δφy:	

Angular distribution:

- $\Delta \Phi x$, $\Delta \Phi y$: Defines the beam's angular distribution in the x/y plane, as:
 - Flat: Full width of a rectangular angular distribution centred around the beam axis [mrad]
 - **Isotropic**: Isotropic distribution (Input as **Flat** distribution with angle larger than 2π [rad])
 - Gaussian: FWHM of a Gaussian angular distribution [mrad]

Default: $\Delta \Phi x = 0.0$, $\Delta \Phi y = \Delta \Phi x$

Input card: **SPOTPOS** (optional)

SPOTPOS spot_id	X:	y:	z:	
Shape(X): Rectangular 🔻	Δx:	Shape(Y): Rectangular 🔻	Δy:	

Spot definition:

 spot_id: ID number of the beam spot, which this card applies to Note the unusual location of the input field

Beam spot position:

• x, y, z: Position of the beam spot along the x, y, and z axes [cm]

Beam spot shape:

Shape(X), **Shape(Y)**: Defines the spatial distribution of the beam spot, as:

- **Rectangular**: Full beam width in **x/y** direction centred at the beam axis [cm]
- Gaussian: FWHM of a Gaussian distribution in x/y direction centred at the beam axis [cm]

Default: $\Delta x = 0.0$, $\Delta y = \Delta x$

Input card: **SPOTPOS** (optional)

SPOTPOS spot_id	X:	у:	Z:	
Shape(X): Annular 🔻	Rmin:	Rmax:		

Beam spot shape (cont.):

Shape(X): Defines the spatial distribution of the beam spot, as:

• Annular: Defines a cylindrical beam shape in the x-y plane

Rmin and Rmax are the radii of the distribution

For circular beam use **Rmin = 0**

Defaults:

If no values or **SPOTPOS** card provided, then the position and shape is taken from the **BEAM** and **BEAMPOS** cards

Input card: **SPOTDIR** (optional)

SPOTDIR spot_id	COSX:	cosy:	COSZ:	
	cosBxx:	cosBxy:	cosBxz:	

Spot definition:

• **spot_id**: ID number of the beam spot, which this card applies to Note the unusual location of the input field

Beam spot direction:

• cosx, cosy, cosz: Defines the direction cosines of the beam

Default: Beam direction specified on the **BEAMPOS** card is used

Input card: **SPOTDIR** (optional)

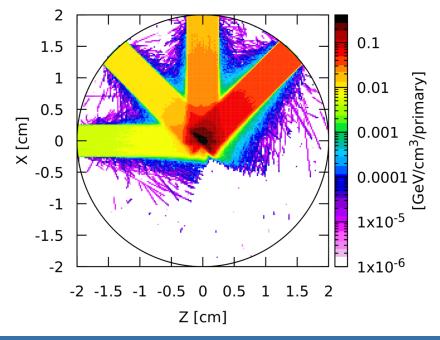
SPOTDIR spot_id	COSX:	cosy:	COSZ:	
	cosBxx:	cosBxy:	cosBxz:	

Beam spot coordinate system:

 cosBxx, cosBxy, cosBxz: Defines the direction cosines of the x axis of the beam coordinate system

Default: Beam coordinate system defined on the **BEAMAXES** card is used

If the x axis of the beam spot coordinate system is specified, the z axis will be the beam spot direction, and the y axis will be automatically computed



Input card: **SPECSOUR – BEAMSPOT**

Example:

R = 2 cm water sphere 47.5 MeV, 2.5 mm cylindrical, proton beams 4 spots, in 45° steps, with 2ⁿ weight

Depostied energy

🌞 BEAM		Beam:	Energy 🔻	E:	0.0475
	Flat 🔻	Δp:			Flat 🔻
Shape(X):	Rectangular 🔻	Δx:		Shape(Y):	Rectangular 🔻
💆 SPECSOUI	R	Type:	BEAMSPOT 🔻	# spots:	4
SPOTBEA	M 1	Beam:	Momentum 🔻	p:	
		Z:	0	A:	0
	Flat 🔻	Δp:		Spot Weight:	1
	Flat 🔻	Δφχ:		Δφγ:	Flat 🔻
🐌 SPOTPOS		X:		y:	
	Annular 🔻	Rmin:		Rmax:	0.25
🛴 SPOTDIR	1	COSX:		cosy:	
		cosBxx:		cosBxy:	
SPOTBEA	M 2	Beam:	Momentum 🔻	p:	
		Z:	0	A:	0
	Flat 🔻	Δp:		Spot Weight:	2
	Flat 🔻	Δφχ:		Δφγ:	Flat 🔻
🐌 SPOTPOS		X:	5	y:	
	Annular 🔻	Rmin:		Rmax:	0.25
# #define	angle2	:	-45		
🖵 SPOTDIR	2	COSX:	=sind(angle2) cosy:	0
		cosBxx:	=cosd(angle2) cosBxy:	0
SPOTBEA	М 3	Beam:	Momentum 🔻	p:	
		Z:	0	A:	0
	Flat 🔻	Δp:		Spot Weight:	4
	Flat 🔻	Δφχ:		Δφγ:	Flat 🔻
🐌 SPOTPOS		X:	5	y:	
	Annular 🔻	Rmin:		Rmax:	0.25
# #define	angle3	:	-90		
🛴 SPOTDIR	3	COSX:	=sind(angle3) cosy:	0
Г		cosBxx:	=cosd(angle3	cosBxy:	0
SPOTBEA	M 4	Beam:	Momentum 🔻	p:	
		Z:	0	A:	0
Δp:	Flat 🔻	Δp:		Spot Weight:	
	Flat 🔻	Δφχ:		Δφγ:	Flat 🔻
SPOTPOS	4	X:	5	y:	
Shape(X):	Annular 🔻	Rmin:		Rmax:	0.25
# #define	angle4	:	-135		
🛴 SPOTDIR	4	COSX:	=sind(angle4) cosy:	0
r			=cosd(angle4		

Part: PROTON v Δφ: Δy: Sampling: Random v Part: 🔻 Isomer: 0 Δφy: z: -5 COSZ: cosBxz: Part: 🔻 Isomer: 0 Δφy: z: -5 cosz: =cosd(angle2) cosBxz: =-sind(angle2) Part: 🔻 Isomer: 0 Δφy: Z: cosz: =cosd(angle3) cosBxz: =-sind(angle3) Part: 🔻 Isomer: 0 $\Delta \phi y$: z: 5 cosz: =cosd(angle4) cosBxz: =-sind(angle4)

USRBIN source

Type: **BIN-SOUR**

Special sources – USRBIN source

Input card: **SPECSOUR – BIN-SOUR**

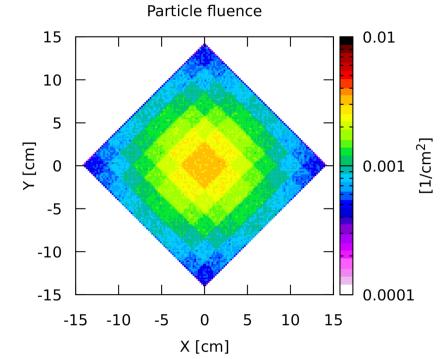
Allows to use the result of an **USBRIN** scoring as a volumetric source distribution

SPECSOUR	Type: BIN-SOUR 🔻	Unit: 🔻	Det ld:	
	Rot-before: 🔻	Rot-after: 🔻		

- Unit: Logical unit of the USRBIN file, specified on a OPEN card
- Det Id: Detector index in the specified USRBIN file
- Rot-before: Rotation / translation applied before the sampling, specified with a ROT-DEFI card
- Rot-after: Rotation / translation applied after the sampling, specified with a ROT-DEFI card

Notes:

- The scored quantity in the **USRBIN** file doesn't matter, it only provides the probability of each bin
- Only Cartesian scorings can be used
- The starting location in each bin sampled uniformly
- Sampled particles are defined with the **BEAM** card
- **BEAM-POS** and **BEAMAXES** cards still apply after the sampling (before **Rot-after**)
- Possible use to sample a radioactive source


Special sources – USRBIN source

Input card: **SPECSOUR**

Example:

USRBIN file opened with logical unit 99 and rotated around the Z axis.

(Beam direction along Z axis)

🖻 OPEN	Unit: 99 BIN 🔻	Status: OLD 🔻		
	File: bin-sour_sour			
A SPECSOUR	Type: BIN-SOUR 🔻	Unit: 99 🔻	Det ld: 1	
	Rot-before: Pre 🔻	Rot-after: 🔻		
☆ ROT-DEFI	Axis: Z ▼	ld: 0	Name: Pre	
	Polar:	Azm: 45		
	Δx:	Δу:	Δz:	

