

Secondary Beam Lines Exercise

First complete beam line in FLUKA

Beginner online training, Fall 2020

Overview

- Purpose and users
- Secondary/tertiary beam lines
- Exercise introduction

Purpose and Users

Secondary Beam Areas (SBA) are hosting:

- FT experiments: COMPASS,NA61, NA62, NA63, NA64, CLOUD.
 - Precision studies (QCD, standard model, BSM physics)
 - Stable beam conditions for weeks and weeks
- Radiation facilities: HiRadMat, Charm, Irrad, GIF++
- Test beams:
 - Detector prototype tests
 - Detector calibration

e.g. for LHC, linear colliders, space & balloon experiments

equire a large spectrum of beam conditions withir

Secondary beam lines exercise

• Outreach

NA beamline design considerations

- NA beams were originally (end of 1970's) designed for the fixed target experiments. Design considerations were
 - Muon range (absorb underground)
 - Charged pion lifetime
 - Momentum selection (2·10⁻⁴)

Secondary Beam Lines

Study of CERN secondary beam lines:

- Create your first complete experiment from scratch:
 - Define a primary proton beam
 - Define a target on which the proton beam will collide
 - Define a bending (sweeping) magnet after target
 - Score particles after the magnet

SBL – To be done

Preparation of the input file

- Start from scratch -> no input given. You can use the predefined basic examples in FLAIR.
- Define a pencil proton beam (0 divergence and 0 spatial distribution in X,Y) with 400 GeV/c momentum.

Define the beam chara	cteristic	5		
🔅 BEAM	Beam: Mon	nentum 🔻	p: 400.0	Part: PROTON V
∆p: Flat ▼	Δp:		∆¢: Flat ▼	Δφ:
Shape(X): Rectangular	▼ Δx:	Shap	e(Y): Rectangu	ular▼ ∆y:

- Create a cylindrical beryllium target of 2 mm diameter and 400 mm long.
- Create a magnet region in vacuum after target of 1mx1mx5m in x,y,z respectively.
- Add a MGNFIELD card and associate it with the magnet region. Add a field in Y of 2 Tesla
- Define a scoring region in vacuum of 1cmx1cmx1cm dimensions 200 cm after the magnet.
 Define a scoring card to score particles in the scoring region.

SBL

Preparation of the input file

Task : Score particles after bending magnet

Use USRTRACK to track particles in the scoring region

coring particles with usrtrack, neutrons in this case						
USRTRACK		Unit: 21 BIN V	Name: scoren			
Type: Linear 🔻	Reg: SCORE 🔻		Vol:			
Part: NEUTRON V	Emin: 1.	Emax: 400.	Bins: 399			

• Run 1 cycle with 10000 primaries.

SBL

Plotting results

- Using Flair:
 - Plot the magnetic field in the magnet region
 - Plot particles fluence after the magnet (in the scoring region) for: protons, neutrons, photons. Do the spectra show what you expect?

SBL-Optional Tasks

- Assuming that some primaries do not interact on target and exit it undisturbed (This
 is a good approximation in our case). Calculate the maximum size that your scorer
 can have in x in order to not detect 400 GeV/c protons.
- Use the formula $\vartheta[rad] = (0.29979 * B[T] * L[m])/p[GeV/c]$ to calculate the bending angle of the bending magnet.

SBL-Optional Tasks

• Try using an aluminium target and compare the neutron fluence to your current results.

SBL-Optional Tasks

- Add a concrete (PORTLAND-concrete, defined in FLUKA materials) shielding around your experiment, start using use a thickness of 40 cm.
- The shielding should be created subtracting one RPP to the other in order to create a layer of concrete around the experiment.

Shielding Internal Part		
🜈 RPP shieldin	Xmin: -60	Xmax: 60
_	Ymin: -100	Ymax: 100
	Zmin: -10	Zmax: 900
Shielding External Part		
🜈 RPP shieldout	Xmin: -110	Xmax: 110
_	Ymin: -150	Ymax: 150
	Zmin: -60	Zmax: 950

- It's quite common in secondary beams to have two or more experiments placed close by. In this case it's important that none of the experiments create backgrounds for the neighboring ones.
- Assuming that a low energy neutron detector of transverse dimensions of 1mx1m and 1cm thickness
 is placed on axis at z=20*m. Run 1 cycle with 1000 primaries and score using usrtrack as previously
 defined. Check the fluence for low energy (<10 GeV) and make sure it's less than 0.001 cm/GeV.

