

Interlude

- RADDECAY: "my simulation is taking a lot of time"
- LAM-BIAS: very helpful e.g. in e- machine shielding applications

Beginner online training, Fall 2020

RADDECAY detail

Input card: RADDECAY

From activation exercise instructions:

Preparation of the input file

- Add a **RADDECAY** card that:
 - Use defaults for residual transport (PRECISION: 100 keV for photons and electrons)

Switch off EMF for the prompt transport

- Define the irradiation profile:
 - 180 days of irradiation, with 10¹⁰ primaries per second
- Define a cooling time:
 - 12 hour after the end of irradiation

CPU time with/without killing prompt shower

• Killing the prompt shower as advertised:

ADDECAY Decays: Active ▼ Patch Isom: ▼ Replicas: 3.0 h/µ Int: ignore ▼ h/µ LPB: ignore ▼ h/µ WW: ignore ▼ e-e+ Int: ignore ▼ e-e+ LPB: ignore ▼ e-e+ WW: ignore ▼ Low-n Bias: ignore ▼ Low-n WW: ignore ▼ decay cut: 10.0 prompt cut. 99999.0 Coulomb corr: ▼

Average CPU time/primary: 10-2 s

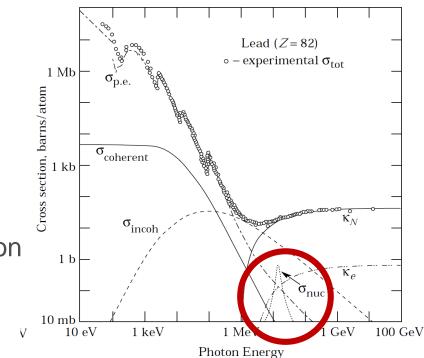
• Forgetting to kill the prompt shower:

RADDECAY Decays: Active ▼ Patch Isom: ▼ Replicas: 3.0 h/µ Int: ignore ▼ h/µ LPB: ignore ▼ h/µ WW: ignore ▼ e-e+ Int: ignore ▼ e-e+ LPB: ignore ▼ e-e+ WW: ignore ▼ Low-n Bias: ignore ▼ Low-n WW: ignore ▼ decay cut: 10.0 prompt cut: 0.0 Coulomb corr: ▼

Average CPU time/primary: 6x10⁻² s

Mean Free Path Biasing

Input card: LAM-BIAS


Where is mean-free-path biasing needed?

Reaction yields from thin targets:

- E.g. you want to get the neutron spectrum from a thin (~1 mm) ⁷Li slab under p irradiation
- Nuclear inelastic scattering lengths are O(10 cm) -> less than 1% probability of sampling the (p,xn) events that are relevant for the above geometry
- You would have to sample a lot of events for a small fraction of relevant events

e- machine shielding:

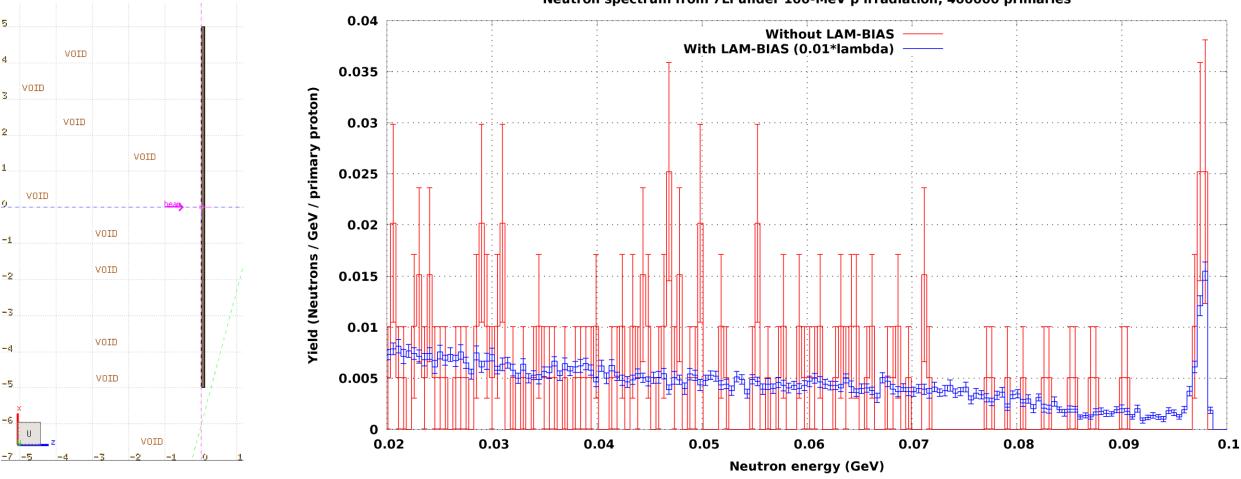
- The scenario:
 - e- undergo Bremsstrahlung
 - \rightarrow Generated photons can undergo (γ ,xn)
 - \rightarrow Radiation protection issue
- Photonuclear interactions have comparatively low cross section
- You'd have to sample **a lot** of events for a small fraction of relevant events

The mean-free-path biasing solution

- Artificially shorten the nuclear inelastic scattering length Λ_i , e.g. $\Lambda_i' = \Lambda_i / 100$
 - \rightarrow Nuclear interactions will be more frequently sampled
- This obviously distorts the physics
 - → The particle's (statistical) weight is lowered accordingly

Mean Free Path Biasing

Input card: LAM-BIAS (see manual for more details)


- Type
 - <empty>
- × mean life
 - Doesn't apply
- × λ inelastic
 - Interaction length correction factor
- Mat
 - Material where the correction factor applies
- Part to Part Step
 - Standard FLUKA particle selection

Example explanation:

Proton interaction length in *beryllium* is multiplied by a factor *correction factor=0.02* (reduced by a factor 50)

		\downarrow	
LAM-BIAS	Туре: 🔻	× mean life:	× λ inelastic: 0.02
Mat: BERYLLIU 🔻	Part: PROTON v	to Part: 🔻	Step:

Example: n yield from 1mm 7Li under 100-MeV p

Neutron spectrum from 7Li under 100-MeV p irradiation, 400000 primaries

Photonuclear interactions

• Are not on by default (!). You request them via the PHOTONUC card:

▶ PHOTONUC Type: ▼ All E: On ▼ E>0.7GeV: off ▼ △ resonance: off ▼ Quasi D: off ▼ Giant Dipole: off ▼ Mat: BLCKHOLE ▼ to Mat: @LASTMAT ▼ Step: 1

 Since photonuclear cross sections are somewhat suppressed compared to other processes, you need to shorten the mean free path for this process (e.g. factor 50-100) with the LAM-BIAS card:

