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Satellite Images: Importance

Use of Satellite images:

• Relief Works

• Risk Assessment due to disasters like Flood

• Phenomenal in making strategies for some of the
critical problems like refugee management

• Planning and high level overview of the status of
different crisis

Applications in Deep Learning

• Building models to make relief works easier

• Ensure efficiency and timeliness of the rescue and
rehabilitation operations

• Make systems for sharing information sharing to
response teams as early as possible

Fig. Flood Image of Myanmar provided by UNOSAT
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• Image imputation for
distorted images, for
examples the images
taken by a satellite in
cloudy environment.

• Data Augmentation

• Synthetic Images can be
shared with a lot of stake
holders outside the
imaging organization. This
is the objective of
UNOSAT in particular.

• Similarly, for open-source
projects, synthetic images
are useful.
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Synthetic Images for Satellite Images

This work was done in collaboration with UNOSAT
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OBJECTIVE OF THE PROJECT: IMAGE COMPLETION WHERE THE 

GENERATION OF EACH TILES ARE CONDITIONED ON PREVIOUSLY 

GENERATED TILES
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FIRST STEP: CONDITIONING THE GENERATION OF 

SECOND TILE WITH INFORMATION FROM FIRST
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SECOND STEP: COMPLETING THIRD TILE WITH 

INFORMATION FROM FIRST AND SECOND (GENERATED) TILE
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FINAL STEP: THE COMPLETE IMAGE WHICH IS COMPLETED BY 

CONDITIONING THE GENERATION OF EACH TILES
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Progressive Conditional GAN 
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Progressive GANs

Karras, Tero, et al. "Progressive growing of gans for improved quality, stability, and variation."
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Nature of Conditional GAN

• Unlike most of the previous works using a combination of reconstruction, contextual
or/and adversarial losses, our method is strictly conditional and only (Conditional)
GAN-based so that it preserves the key-feature of CGAN.

Why Encoders?

• The major issue having a strict GAN architecture lies in the fact that the conditional
part is too large to be directly injected as input into the Generator. It should be
encoded creating a bottle neck limiting the quantity of information transmitted to the
Generator.

• To tackle this issue, we introduced secondary encoders re-injecting information at
each stage of the Progressive Generator.
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Conditional Progressive GANs with Multiple Encoders

A slightly different approach…
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UNOSAT Flood Dataset

THE DATASET
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THE FIRST STEP

Correctly guessing the fourth tile!
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Initializing the training

THE APPROACH

Nature of the dataset

256 X 256

Single Channel
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RESULTS

REAL IMAGES FAKE IMAGES
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• Completing a bigger image tile by tile
rather than filling the fourth tile only.

• Assessing the quality of the GAN by testing
on various datasets.

• Evaluating the performance with standard
evaluation metrics.
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FURTHER WORKS
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QUESTIONS?

surenthapa5803@gmail.com
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