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Disclaimer
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Why BSM  simulation?
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¥ Algorithmic 

¥ Less error prone 

¥ Long

Why automated tools 
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Many diagrams
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Hadron colliders

LEP LHC
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Hadron collider event

Feynman diagram

Models
Approximate 

Feynman diagram
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UFO,É

StandAlone,É

LHE,É

HepMC,É

HepMC 
,É

BSM simulation

Detector events

Fully Automated

matrix-element

parton events

Showered events

MadGraph, SHERPA,É

 Herwig,É

FeynRules,LanHEP,É

Pythia,É

 Madgraph,, SHERPA,É

Delphes,É

Feynman rules

Lagrangian

hadronized events

remaining of this talk

B. Fuks
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FeynRules in a nutshell

cp3

Introduction
From FeynRules to FeynArts so far

The new FeynRules interface to FeynArts
Conclusion

Welcome in the FeynRules era

C. Degrande The new FeynRules interface

¥ FeynRules comes with a set of interfaces, that allow to 
export the Feynman rules to various matrix element 
generators.

¥ Interfaces coming with current public version 

! CalcHep / CompHep

! FeynArts / FormCalc

! MadGraph 4

! Sherpa

! Whizard / Omega
© C. Degrande

FeynRules in a nutshell

Donnerstag, 14. Oktober 2010

Input : model.fr

Output : vertices
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Feynman rules outputs

FeynRules 
outputs  can be 
used directly by 

event generators

UFO : output with 
the full information 

used by several 
generators 
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Feynman Rules

Lanhep, FeynRules, É take care of all the conventions

cross-check ME and event generation PredeÞned 
basis for most 

ME

Lorentz (Metric/Levi-
Civita tensors, 
Momenta,Dirac 

matrices)

Color 
representation

Coupling 
(function of the 

parameters)

igs Ta3
i 1 i 2

! µ 3

!

"
øu 1
u 2
g 3

#

$
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¥ Generic output with the full  model information 

¥ coupling_orders.py, parameters.py, particles.py, 
write_param_card.py, __init__.py, 

¥ vertices.py, couplings.py, lorentz.py 

¥ decays.py 

¥ CT_vertices.py, CT_couplings.py (For NLO) 

¥ Python module used in MadGraph, Herwig, Gosam, Sherpa

UFO

igsTa! µ No basis, all the lorentz 
structures of the model



NLO
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¥ Box, Triangle, Bubble and Tadpole are known scalar 
integrals 

¥ Loop computation = find the coefficients 

¥ Unitarity 

¥ Multiple cuts 

¥ Tensor reduction (OPP)

Loop computation

Prelims History Present

Tensor Reduction 2

A 1! loop =
!

i

di Boxi +
!

i

ci Trianglei +
!

i

bi Bubblei

+
!

i

ai Tadpolei + R

where

Tadpolei =
"

dn øq 1
øD 0

Bubblei =
"

dn øq 1
øD 0 øD 1

Trianglei =
"

dn øq 1
øD 0 øD 1 øD 2

Boxi =
"

dn øq 1
øD 0 øD 1 øD 2 øD 3

analytic workis necessary

Roberto Pittau Automatizing 1-loop multi-leg calculations for LHC (and IL C)
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R2

Finite set of vertices that can be computed once 
for all

What are the R2 rational terms?

øA (øq) =
1
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Finite (# 4 legs) set of vertices computed once for all!
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d 4 !

in MadLoop [4] available in the MadGraph5 aMC@NLO framework leading to a complete
automated tool for NLO computation. So far only the SM model has been implemented despite
that MadLoop is based onMadGraph5 [5] for which many BSM models are available. As a
matter of fact, the evaluation of the loop corrections requires two extra ingredients that so far
have been added by hand in the model. The Þrst one is the counterterms introduced by the
renormalization procedure to absorb all the UV divergences arising at the one-loop level. While
the divergences can be extracted from the scalar integrals, any renormalization scheme with a
non-trivial Þnite part in the counterterms requires a careful redeÞnition of the Þelds and of the
independent parameters of the model and the resolution of the renormalization conditions. The
second missing element depends on the actual method used to perform the tensor decomposition
of the loop amplitudes. In the case of OPP, it is a part of the rational term. In d dimensions,
any one-loop amplitude can be written as

A (q) =
1

(2! )4

!
ddq

N (q)

D 0D 1 . . . D m ! 1
, (2)

with the propagator denominators given by D i ! (q + pi )
2 " m2

i and wheremi are the masses
of the particles in the loop, q is the loop momentum andpi are linear combinations of external
momenta. All the quantities written with a bar live in d dimensions and can therefore be split in
a four dimensional part x and a d" 4 dimensional part ÷x as follow x ! x + ÷x. Rational terms are
Þnite contributions generated by the part of the integrand linear in d " 4. One then organizes
the rational part in two terms, R1 and R2. The rational term R1 is due to the d " 4 component
of the integrand denominators and can be computed as the four-dimensional piece but using a
di! erent set of scalar integrals [6]. TheR2 terms are deÞned as the Þnite part due to thed " 4
component of the numerator

R2 ! lim
! ! 0

1

(2! )4

!
ddq

÷N (÷q, q,")

D 0D 1 . . . D m ! 1
, (3)

where " is deÞned byd ! 4 " 2". We use here the Õt Hooft-Veltman scheme [7] such that all
the quantities in the loop, i.e. the loop momentum, the metric and the Dirac matrices live in d
dimensions:

#µ " #µ " = d, (4)

$µ $µ = d1, (5)

where 1 is the identity matrix in Dirac space. The external momenta and polarization vectors
have only four dimensional components. The Dirac matrices ind dimensions$u are chosen to
anti-commute with $5 [8, 9, 10]. Therefore, the cyclic property of Dirac trace has to be dropped
to avoid algebraic inconsistency. The result of the evaluation of the integral in (3) is a set of
process independent Feynman rules. As a consequence, they should only be computed once for
each model. TheR2 term are the second missing ingredient as they had to be computed so far by
hand for each model. TheR2 terms are known for the full SM [11][12] and for QCD corrections
to the MSSM [13]. A package for the automatic computation of theR2 terms for the SM has
also been developed [14].

The purpose of this paper is to show that the procedure of determining the UV counterterms
and the R2 terms can be automated for any Lagrangian. The computation of the missing ele-
ments is done by threeMathematica packages,FeynRules [15], NLOCT and FeynArts [16].
NLOCT is a completely new package, new functionalities have been added toFeynRules to
renormalize models and output the NLO vertices in theUFO format [17] while FeynArts has
not been altered. The only requirement is that the model should be written in the Feynman
gauge. At this stage, the package is restricted to renormalizable theories. Renormalizability
is here understood strictly and not order by order like for e! ective Þeld theories. Namely, the
dimension of the operators in the Lagrangian should be equal to or lower than four. Although
the R2 terms are not always required, the UV counterterms are needed for any one-loop com-
putation. Therefore, the automatically generated models can be used to provide the necessary

2
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R2 example
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in MadLoop [4] available in the MadGraph5 aMC@NLO framework leading to a complete
automated tool for NLO computation. So far only the SM model has been implemented despite
that MadLoop is based onMadGraph5 [5] for which many BSM models are available. As a
matter of fact, the evaluation of the loop corrections requires two extra ingredients that so far
have been added by hand in the model. The Þrst one is the counterterms introduced by the
renormalization procedure to absorb all the UV divergences arising at the one-loop level. While
the divergences can be extracted from the scalar integrals, any renormalization scheme with a
non-trivial Þnite part in the counterterms requires a careful redeÞnition of the Þelds and of the
independent parameters of the model and the resolution of the renormalization conditions. The
second missing element depends on the actual method used to perform the tensor decomposition
of the loop amplitudes. In the case of OPP, it is a part of the rational term. In d dimensions,
any one-loop amplitude can be written as

A (q) =
1

(2! )4

!
ddq

N (q)

D 0D 1 . . . D m ! 1
, (2)

with the propagator denominators given by D i ! (q + pi )
2 " m2

i and wheremi are the masses
of the particles in the loop, q is the loop momentum andpi are linear combinations of external
momenta. All the quantities written with a bar live in d dimensions and can therefore be split in
a four dimensional part x and a d" 4 dimensional part ÷x as follow x ! x + ÷x. Rational terms are
Þnite contributions generated by the part of the integrand linear in d " 4. One then organizes
the rational part in two terms, R1 and R2. The rational term R1 is due to the d " 4 component
of the integrand denominators and can be computed as the four-dimensional piece but using a
di! erent set of scalar integrals [6]. TheR2 terms are deÞned as the Þnite part due to thed " 4
component of the numerator

R2 ! lim
! ! 0

1

(2! )4

!
ddq

÷N (÷q, q,")

D 0D 1 . . . D m ! 1
, (3)

where " is deÞned byd ! 4 " 2". We use here the Õt Hooft-Veltman scheme [7] such that all
the quantities in the loop, i.e. the loop momentum, the metric and the Dirac matrices live in d
dimensions:

#µ " #µ " = d, (4)

$µ $µ = d1, (5)

where 1 is the identity matrix in Dirac space. The external momenta and polarization vectors
have only four dimensional components. The Dirac matrices ind dimensions$u are chosen to
anti-commute with $5 [8, 9, 10]. Therefore, the cyclic property of Dirac trace has to be dropped
to avoid algebraic inconsistency. The result of the evaluation of the integral in (3) is a set of
process independent Feynman rules. As a consequence, they should only be computed once for
each model. TheR2 term are the second missing ingredient as they had to be computed so far by
hand for each model. TheR2 terms are known for the full SM [11][12] and for QCD corrections
to the MSSM [13]. A package for the automatic computation of theR2 terms for the SM has
also been developed [14].

The purpose of this paper is to show that the procedure of determining the UV counterterms
and the R2 terms can be automated for any Lagrangian. The computation of the missing ele-
ments is done by threeMathematica packages,FeynRules [15], NLOCT and FeynArts [16].
NLOCT is a completely new package, new functionalities have been added toFeynRules to
renormalize models and output the NLO vertices in theUFO format [17] while FeynArts has
not been altered. The only requirement is that the model should be written in the Feynman
gauge. At this stage, the package is restricted to renormalizable theories. Renormalizability
is here understood strictly and not order by order like for e! ective Þeld theories. Namely, the
dimension of the operators in the Lagrangian should be equal to or lower than four. Although
the R2 terms are not always required, the UV counterterms are needed for any one-loop com-
putation. Therefore, the automatically generated models can be used to provide the necessary

2

Õt Hooft Veltman
scheme
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÷q2 d, c, b

÷q2

m2
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!
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3
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2
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!
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øDk
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= −
i ! 2

6
+ O(") .

b(ij ; ÷q2) = b(ij ) + ÷q2b(2) (ij ) ,

c(ijk ; ÷q2) = c(ijk ) + ÷q2c(2) (ijk ) .

Z̄i

Like for the 4 dimensional part but with a different set of 
integrals

Due to the !  dimensional parts of the denominators 

Only R = R1+R2 is gauge invariant Check
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UV
What are the UV counterterms?

øA (øq) =
1

(2! )4

!
dd øq

øN (øq)
øD0

øD1 . . . øDm! 1
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%
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Finite (" 4 legs) set of vertices computed once for all!
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What are the UV counterterms?

Ā (q̄) =
1

(2⇥)4

⌥
dd q̄

N̄ (q̄)
D̄0D̄1 . . . D̄m�1

= K
1
�
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�
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⌃
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�
�0⇥

Finite (� 4 legs) set of vertices computed once for all!

C. Degrande (UIUC) 5 October 2012 21 / 30Finite set of vertices that can be computed once 
for all

Relations Þxed by the Lagrangian (Þnite part)
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Renormalization

External parameters

Same for the conjugate Þeld

Internal parameters are renormalised by replacing the 
external parameters in their expressions

one-loop ingredients for other NLO tools thanMadGraph5 aMC@NLO like GoSam [18] for
example which is already using theUFO format. As an explicit example, we consider the Two
Higgs Doublet Model (2DHM). The 2HDM is a simple but important extension of the SM since
it provides a well deÞned model to search for extra scalar particles.

The paper is organized as follows. The second section focuses on the renormalization of the
Lagrangian and introduces the renormalization conditions for the on-shell scheme. This scheme
is easily extended to complex mass scheme to provide an appropriate treatment of the widths.
The main advantage of those schemes is to avoid the evaluation of the loops on the external legs
and it is used, for example, inMadLoop to make the computation faster. The third section
discusses the algorithm for the computation of the counterterms from the amplitudes. This
section ends with the validation of the algorithm. The 2HDM is brießy introduced in Sect. 4 to
Þx the notation. The R2 and UV counterterm vertices for the 2HDM are given in Sect. 5 and 6
respectively. Finally, the conclusion is given in the last section.

2 Renormalization

2.1 The renormalization constants

In dimensional regularization UV-divergences appear as poles in 1/✏ where d ⌘ 4 � 2✏. In a
renormalizable theory, they can absorbed by a redeÞnition of the free parameters and of the
Þelds

x0 � x + �x,

�0 � (1 +
1
2
�Z!! )� +

!

"

1
2
�Z!" �, (6)

where x is an external parameter and� and � are Þelds with the same quantum numbers, the
bare quantities are denoted by an additional zero subscript compared to the renormalized Þelds or
parameters, the renormalization constant are preceded by a�. For the fermions, each chirality is
renormalized independently. The external parameters are independent parameters which values
should be Þxed by experiments. On the contrary, internal parameters are functions of the external
parameters. Internal parameters are also renormalized. However, their renormalization does not
require the introduction of new renormalization constants and is Þxed by their dependence on
the external parameters. The same self renormalization constantsZ!! are used for both the
Þelds and their hermitian conjugates and not its conjugate as required by the complex mass
scheme [19]. Their imaginary parts would otherwise disappear form the hermitian Lagrangian.
For example, the kinetic term of a scalar has an imaginary part if

�0 � (1 + 1
2�Z!! )�

�
†
0 � (1 + 1

2�Z!! )�†

"
) @

µ
�0@µ�

†
0 � (1 + �Z!! )@µ

�@µ�
† (7)

to absorb the imaginary part coming from the corresponding term of the two point loop ampli-
tude. On the contrary, they would be no imaginary part if the conjugated Þeld is renormalized
with the conjugate of the renormalization constant, i.e.

�0 � (1 + 1
2�Z!! )�

�
†
0 � (1 + 1

2�Z
!
!! )�†

"
) @

µ
�0@µ�

†
0 � (1 + <�Z!! )@µ

�@µ�
†
. (8)

In the on-shell scheme, those constants are real and therefore also identical for both the Þelds
and their conjugates. Similarly, external parameters inFeynRules are real and therefore renor-
malized by the same constants as their conjugates. Again, this is valid for both schemes even if
the external parameters have complex renormalization constants as in the complex mass scheme.
The renormalization is therefore identical for those two renormalization schemes but only the
bare Lagrangian is hermitian in the complex mass scheme since the renormalization constants
are complex in this scheme. The bare Lagrangian can also be split into the renormalized one

3
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Renormalization conditionsThe renormalization conditions should be chosen to ease as much as possible the problem at
hand or to make the physics transparent. In this respect, the renormalized mass is identiÞed to
the physical one, the real part of the pole of the propagator in the on-shell scheme such that its
value is given by the mass measurement. Furthermore it allows to get rid of the corrections on
the external legs of the amplitudes by forcing the two-point functions to vanish on-shell. More
details on the on-shell scheme can be found in Ref. [21]. In the following, we will given the
renormalization conditions as they are implemented in the NLOCT package.

First, the tadpole counterterms are chosen to cancel the loop corrections such that no tadpole
should be included in any computation. Secondly, the mass and the wave functions renormaliza-
tion constants are Þxed by the conditions on the two-point functions. Writing the renormalized
fermion two-point function as

i ! ij (!p ! mi ) + i
!
f L

ij

"
p2#

!p" � + f R
ij

"
p2#

!p" + + f SL
ij

"
p2#

" � + f SR
ij

"
p2#

" +
$

, (10)

where " ± = 1±�5

2 and the f functions contain both the loop and counterterm contributions, the
renormalization conditions in the on-shell scheme for the fermions are

÷"
!
f L

ij

"
p2#

mi + f SR
ij

"
p2#$%

%
%
p2= m 2

i

= 0 ,

÷"
!
f R

ij

"
p2#

mi + f SL
ij

"
p2#$%

%
%
p2= m 2

i

= 0 ,

÷"
&
2mi

#
#p2

!"
f L

ii

"
p2#

+ f R
ii

"
p2##

mi + f SL
ii

"
p2#

+ f SR
ii

"
p2#$

+ f L
ii

"
p2#

+ f R
ii

"
p2#

' %
%
%
p2= m 2

i

= 0 .

(11)

The function ÷" takes the real part of the loop function but not of the couplings or of the mixing
parameters. The o! -diagonal conditions allow to absorb the corrections that mix di! erent ßavors
in the wave function renormalizations. The renormalized Þelds are therefore mass eigenstates. If
the two fermion ßavors are massless, the Þrst two conditions are trivially satisÞed and therefore
are replaced by ÷" f L

ij (0) = 0 and ÷" f R
ij (0) = 0 to Þx the renormalization constants. For a

Majorana fermions " , the left and right renormalization constant for the wave function should
be complex conjugate of each other since the left and right handed fermion Þelds are related by

" R = ei↵ (" L )c (12)

where $ is the Majorana phase. The two Þrst conditions should therefore be equivalent for a
Majorana fermion if only one renormalization constant is used. Similarly, if the renormalized
two-point function for a scalar is

i ! ij
"
p2 ! m2

i

#
+ if S

ij

"
p2#

, (13)

and the renormalization conditions read

÷"
!
f S

ij

"
p2#$%

%
%
p2= m 2

i

= 0

÷"
!
f S

ij

"
p2#$%

%
%
p2= m 2

j

= 0

÷"
&

#
#p2 f S

ii

"
p2#

' %
%
%
p2= m 2

i

= 0 . (14)

Finally, if the renormalized two-point function of a vector is written as

! i ! ij %µ⌫

"
p2 ! m2

i

#
! if T

ij

"
p2#

(
%µ⌫ !

pµ p⌫
p2

)
! if V L

ij

"
p2# pµ p⌫

p2 , (15)
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The renormalization conditions should be chosen to ease as much as possible the problem at
hand or to make the physics transparent. In this respect, the renormalized mass is identiÞed to
the physical one, the real part of the pole of the propagator in the on-shell scheme such that its
value is given by the mass measurement. Furthermore it allows to get rid of the corrections on
the external legs of the amplitudes by forcing the two-point functions to vanish on-shell. More
details on the on-shell scheme can be found in Ref. [21]. In the following, we will given the
renormalization conditions as they are implemented in the NLOCT package.

First, the tadpole counterterms are chosen to cancel the loop corrections such that no tadpole
should be included in any computation. Secondly, the mass and the wave functions renormaliza-
tion constants are Þxed by the conditions on the two-point functions. Writing the renormalized
fermion two-point function as
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where �± = 1±�5

2 and the f functions contain both the loop and counterterm contributions, the
renormalization conditions in the on-shell scheme for the fermions are
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The function ÷< takes the real part of the loop function but not of the couplings or of the mixing
parameters. The o↵-diagonal conditions allow to absorb the corrections that mix di↵erent ßavors
in the wave function renormalizations. The renormalized Þelds are therefore mass eigenstates. If
the two fermion ßavors are massless, the Þrst two conditions are trivially satisÞed and therefore
are replaced by ÷<fL

ij
(0) = 0 and ÷<fR

ij
(0) = 0 to Þx the renormalization constants. For a

Majorana fermions , the left and right renormalization constant for the wave function should
be complex conjugate of each other since the left and right handed fermion Þelds are related by

 R = e
i↵ ( L)c (12)

where ↵ is the Majorana phase. The two Þrst conditions should therefore be equivalent for a
Majorana fermion if only one renormalization constant is used. Similarly, if the renormalized
two-point function for a scalar is
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and the renormalization conditions read
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Finally, if the renormalized two-point function of a vector is written as
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On-shell scheme (or complex mass scheme):

Similar for the vectors and scalars

Renormalized mass = Physical mass
Two-point function vanishes on-shell (No external 
bubbles)
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Renormalization conditionsThe renormalization conditions should be chosen to ease as much as possible the problem at
hand or to make the physics transparent. In this respect, the renormalized mass is identiÞed to
the physical one, the real part of the pole of the propagator in the on-shell scheme such that its
value is given by the mass measurement. Furthermore it allows to get rid of the corrections on
the external legs of the amplitudes by forcing the two-point functions to vanish on-shell. More
details on the on-shell scheme can be found in Ref. [21]. In the following, we will given the
renormalization conditions as they are implemented in the NLOCT package.

First, the tadpole counterterms are chosen to cancel the loop corrections such that no tadpole
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The function ÷< takes the real part of the loop function but not of the couplings or of the mixing
parameters. The o↵-diagonal conditions allow to absorb the corrections that mix di↵erent ßavors
in the wave function renormalizations. The renormalized Þelds are therefore mass eigenstates. If
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6

On-shell scheme (or complex mass scheme):

Similar for the vectors and scalars

Renormalized mass = Physical mass
Two-point function vanishes on-shell (No external 
bubbles)
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How does it work?

FeynRules
Renormalize the Lagrangian

NLOCT.m
Compute the NLO vertices

FeynArts
Write the amplitudes

model.mod
model.gen model.nlo
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¥ Madgraph QCD (2014) and EW (2018) 

¥ Recola QCD+EW (2013) 

¥ Wizard QCD (2020) 

¥ SHERPA QCD+EW (2017)

Matrix element at NLO
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C. Degrande

¥ Renormalizable Lagrangian, maximum dimension of 
the operators is 4 

¥ Feynman Gauge 

¥   

¥ Ôt Hooft-Veltman scheme 

¥ On-shell scheme for the masses and wave 
functions 

¥ MS by default for everything else (zero-momentum 
possible for fermion gauge boson interaction)

Restrictions/Assumptions

{�µ, �5} = 0
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# l (!   i
!
D I

µ ! )(ølp%I &µlr )

Q#W !   ! W I
µ! W Iµ ! QuG (øqp$µ! TA ur ) !! GA
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Table 2: Dimension-six operators other than the four-fermion ones.

3 The complete set of dimension-Þve and -six operators

This Section is devoted to presenting our Þnal results (derived in Secs. 5, 6 and 7) for the basis
of independent operatorsQ(5)

n and Q(6)
n . Their independence means that no linear combination

of them and their Hermitian conjugates is EOM-vanishing up to total derivatives.
Imposing the SM gauge symmetry constraints onQ(5)

n leaves out just a single operator [20],
up to Hermitian conjugation and ßavour assignments. It reads

Q!! = #jk #mn ! j ! m(lk
p)T Clnr ! ( !!   lp)T C( !!   l r ), (3.1)

where C is the charge conjugation matrix.2 Q!! violates the lepton numberL. After the
electroweak symmetry breaking, it generates neutrino masses and mixings. NeitherL (4)

SM nor
the dimension-six terms can do the job. Thus, consistency ofthe SM (as deÞned by Eq. (1.1)
and Tab. 1) with observations crucially depends on this dimension-Þve term.

All the independent dimension-six operators that are allowed by the SM gauge symmetries
are listed in Tabs. 2 and 3. Their names in the left column of each block should be supplemented
with generation indices of the fermion Þelds whenever necessary, e.g.,Q(1)

lq " Q(1)prst
lq . Dirac

indices are always contracted within the brackets, and not displayed. The same is true for the

2 In the Dirac representation C = i ! 2! 0, with Bjorken and Drell [21] phase conventions.
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Table 2: Dimension-six operators other than the four-fermion ones.

3 The complete set of dimension-Þve and -six operators

This Section is devoted to presenting our final results (derived in Secs. 5, 6 and 7) for the basis
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In the loop: 
same as SM 

+axial anomaly

More momenta: higher rank 
of the integral numerator

Additional gamma
and colour algebra
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=?         -1         or        +1

Evanescent operators:

Operator O(8)
ut is deÞned as

O(8)
ut =

!
øu! µ TA u

" !
øt! µ TA t

"
(1)

To derive its CTs we need color decomposition:

(TA TB )ij (TB TA )kl =
7
6

(TA )ij (TA )kl +
2
9

" ij "kl (2)

(TA TB )ij (TA TB )kl = !
1
3

(TA )ij (TA )kl +
2
9

" ij "kl (3)

and an evanescent operator deÞned as (see for example, [1])

E =
!
øu! µ ! ! ! " PR TA u

" !
øt! µ ! ! ! " PR TA t

"
+ ( ! 16 + 4a#)

!
øu! µ PR TA u

" !
øt! µ PR TA t

"

(4)

where the a is just to keep track of the evanescent basis dependence;a = 1
corresponds to the choice of [1]. It follows that

! µ ! ! ! " PR " ! µ ! ! ! " PR = E + (16 ! 4a#)! µ PR " ! µ PR (5)

! µ ! ! ! " PR " ! " ! ! ! µ PR = ! E + [4 ! (12 ! 4a)#]! µ PR " ! µ PR (6)

1 Diagrams 1,2

First consider diagrams:

Figure 1:

Left diagram:

M 1 =
C
⇤2 g2

s

#
7
6

T " T +
2
9

" " "
$

%
dD q

(2$)D [øu(p3)! !
(/p3

! /q + m3)

(p3 ! q)2 ! m2
3

! µ PR v(p4)]

[øv(p2)! µ PR
(/p1

! /q + m1)

(p1 ! q)2 ! m2
1

! ! u(p1)]
1
q2 (7)
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Operator O(8)
ut is deÞned as
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!
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and an evanescent operator deÞned as (see for example, [1])
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compute eq. (8) in 4-dimension (as in MadLoop), we would get:
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g
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0
dx
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Comparing this with eq. (10), the R2 can be identified:
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This R2 originates from the way in which E is defined.
The diagram on the right, M2, gives the same contribution (for the divergent

part), so in the end both UV and R2 are doubled:
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2 Diagrams 3,4

Figure 2:
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øu! µ! ! ! "

PRT
A
u

" !
øt! µ! ! ! " PRT

A
t
"

+ ( �16 + 4a#)
!
øu! µ

PRT
A
u

" !
øt! µPRT

A
t
"

(4)

where the a is just to keep track of the evanescent basis dependence;a = 1
corresponds to the choice of [1]. It follows that

! µ! ! ! "
PR ⌦ ! µ! ! ! " PR = E + (16 � 4a#)! µ

PR ⌦ ! µPR (5)

! µ! ! ! "
PR ⌦ ! " ! ! ! µPR = �E + [4 � (12� 4a)#]! µ

PR ⌦ ! µPR (6)

1 Diagrams 1,2

First consider diagrams:

Figure 1:

Left diagram:

M1 =
C

⇤2
g
2
s

#
7
6
T ⌦ T +

2
9

" ⌦ "
$

%
d
D
q

(2$)D
[øu(p3)! !

(/p3 � /q + m3)

(p3 � q)2 �m2
3

! µ
PRv(p4)]

[øv(p2)! µPR

(/p1 � /q + m1)

(p1 � q)2 �m2
1

! ! u(p1)]
1
q2

(7)

1

Extra R2 (gauge invariant)
Change the UV matching
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Axial anomaly

30

gA! " !5
SM:  
gu

A = gc
A = gt

A = " gd
A = " gs

A = " gb
A

SMEFT:  
gu

A # gc
A # gt

A # " gd
A # " gs

A # " gb
A

gA! " !5 =

gAp!5

+ modification of quarks-gluon vertex (chromo)

$ #p1p2" 1" 2
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top pair production 3

Applications While including entirely new ele-
ments, the present implementation is built on earlier
NLO developments tailored to speciÞc applications: top-
quark FCNC [22Ð24], SMEFT e! ects in tøt [25], tøtH and
gg ! Hj, HH [26], tøtZ and gg ! ZH [27], tj [28, 29],
gg ! H in conjunction with analytic two-loop computa-
tions [30], multi-jet [ 31], EW Higgs production [32], and
tHj, tZj [33]. Global Þts in the top-quark sector [34, 35]
have recently made use of NLO predictions obtained with
a development version ofSMEFT@NLO .

The number of possible applications is too vast to be
presented in a comprehensive way in this Letter. We
therefore provide selected novel examples relevant for
top-quark, electroweak, and Higgs-boson phenomenol-
ogy at the LHC and future colliders, focusing on the
importance of NLO e! ects. Numerical results assume
ci / " 2 = 1 TeV ! 2. For concision, at O(" ! 4), we only
quote the ci cj dependencies fori = j . Unless otherwise
speciÞed, we Þx the factorization and both renormaliza-
tion scales to a common value: the sum of Þnal-state
masses divided by two. Uncertainty envelopes are ob-
tained from the separate variations of renormalization
and factorization scales by factors of two up and down
and are quoted in percent. The operator coe# cients are
not evolved. Monte Carlo errors on the last signiÞcant
digit are indicated between parentheses, if they exceed
5%. The NLO sets of NNPDF3.0 [36] are used as par-
ton distribution functions, with ! S (M Z ) = 0 .118. LO
sets are however employed for tree-level and loop-induced
processes. Other relevant parameters aremt = 173 GeV,
mh = 125 GeV, mZ = 91.1876 GeV, mW = 80.41 GeV
and GF = 1 .16637" 10! 5 GeV! 2.

As a Þrst application, we present inTable I the four-
fermion contributions to tøt production at the LHC

#
s =

13 TeV. The NLO computation allows us to extract, for
the Þrst time, the interference of color-singlet operators
with leading QCD contributions. For O(1) coe# cients,
these are typically small, compared to theO(" ! 4) terms
and to the SM cross-section. We also compute their in-
terferences up to NLO in QCD with SM electroweak pro-
duction, which are comparable. One aspect worth not-
ing is that NLO corrections break the LO degeneracy
between various color-octet operators, which could be
crucial in global Þts, see for instance Ref. [34]. An-
other interesting possibility that opens up at NLO is
to probe the third-generation four-quark operators (last
Þve rows in Table I), using t/b -loop induced e! ects in
gg/qøq-initiated channels. They are otherwise mainly con-
strained by tøtbøb and tøtt øt production. Operators involving
doublets already contribute at LO in the bøb ! tøt channel,
but suppressed by theb-quark luminosity. Remarkably,
the linear NLO contributions span two orders of magni-
tude. Cancellations occur between partonic channels and
phase-space regions for all coe# cients other than c1

Qt and
lead to an order-of-magnitude suppression forc1

QQ . As
shown in Figure 1, the contributions from color-singlet

ci
O ( ! ! 2 ) O ( ! ! 4 )

LO NLO LO NLO

c8
tu 4.27+11%

! 9%
4.06+1%

! 3%
1.04+6%

! 5%
1.03+2%

! 2%

c8
td 2.79+11%

! 9%
2.77+1%

! 3%
0.577+6%

! 5%
0.611+3%

! 2%

c8
tq 6.99+11%

! 9%
6.67+1%

! 3%
1.61+6%

! 5%
1.29+3%

! 2%

c8
Qu 4.26+11%

! 9%
3.93+1%

! 4%
1.04+6%

! 5%
0.798+3%

! 3%

c8
Qd 2.79+11%

! 9%
2.93+0%

! 1%
0.58+6%

! 5%
0.485+2%

! 2%

c8, 1
Qq 6.99+11%

! 9%
6.82+1%

! 3%
1.61+6%

! 5%
1.69+3%

! 3%

c8, 3
Qq 1.50+10%

! 9%
1.32+1%

! 3%
1.61+6%

! 5%
1.57+2%

! 2%

c1
tu [0.67+1%

! 1%
] ! 0.078(7) +31%

! 23%
[0.41+13%

! 17%
] 4.66+6%

! 5%
5.92+6%

! 5%

c1
td [! 0.21+1%

! 2%
] ! 0.306+30%

! 22%
[! 0.15+10%

! 13%
] 2.62+6%

! 5%
3.46+5%

! 5%

c1
tq [0.39+0%

! 1%
] ! 0.47+24%

! 18%
[0.50+3%

! 2%
] 7.25+6%

! 5%
9.36+6%

! 5%

c1
Qu [0.33+0%

! 0%
] ! 0.359+23%

! 17%
[0.57+6%

! 5%
] 4.68+6%

! 5%
5.96+6%

! 5%

c1
Qd [! 0.11+0%

! 1%
] 0.023(6) +114%

! 75%
[! 0.19+6%

! 5%
] 2.61+6%

! 5%
3.46+5%

! 5%

c1, 1
Qq [0.57+0%

! 1%
] ! 0.24+30%

! 22%
[0.39+9%

! 12%
] 7.25+6%

! 5%
9.34+5%

! 5%

c1, 3
Qq [1.92+1%

! 1%
] 0.088(7) +28%

! 20%
[1.05+17%

! 22%
] 7.25+6%

! 5%
9.32+5%

! 5%

c8
QQ 0.0586+27%

! 25%
0.125+10%

! 11%
0.00628+13%

! 16%
0.0133+7%

! 5%

c8
Qt 0.0583+27%

! 25%
! 0.107(6) +40%

! 33%
0.00619+13%

! 16%
0.0118+8%

! 5%

c1
QQ [! 0.11+15%

! 18%
] ! 0.039(4) +51%

! 33%
[! 0.12+7%

! 5%
] 0.0282+13%

! 16%
0.0651+5%

! 6%

c1
Qt [! 0.068+16%

! 18%
] ! 2.51+29%

! 21%
[! 0.12+3%

! 6%
] 0.0283+13%

! 16%
0.066+5%

! 6%

c1
tt " 0.215+23%

! 18%
" "

TABLE I. Four-fermion contributions [pb] to top-quark pair
production, at linear and quadratic levels, LO and NLO, in-
cluding QCD scale uncertainties, for the LHC

!
s = 13 TeV

and ci / ! 2 = 1 TeV ! 2. The two-light two-heavy color-singlet
operators (second block) only interfere at NLO with the lead-
ing QCD contribution. The numbers in square brackets cor-
respond to the interference with the EW contribution. The
operators in the third block involve only third-generation
quarks. Non-vanishing contributions at O(! ! 2) and LO from
these operators can arise through thebøb initial state. The SM
NLO QCD cross-section is 744+12%

! 12% pb.

ci
O ( ! ! 2 ) O ( ! ! 4 )

LO NLO K LO NLO K

c8
QQ 0.126+61%

! 35%
0.089+8%

! 66%
0.71 0.170+53%

! 32%
0.165+3%

! 26%
0.97

c8
Qt 0.421+63%

! 35%
0.295+9%

! 69%
0.70 0.498+52%

! 32%
0.333+15%

! 75%
0.67

c1
QQ 0.373+62%

! 35%
0.20(1) +23%

! 115%
0.53 1.513+53%

! 32%
1.40+3%

! 32%
0.93

c1
Qt ! 0.007(1) +88%

! 84%
! 0.14(3) +83%

! 40%
21 2.061+53%

! 32%
1.89+3%

! 33%
0.92

c1
tt 0.741+61%

! 35%
0.42(3) +18%

! 101%
0.57 6.08+53%

! 32%
5.65+3%

! 30%
0.93

TABLE II. Third-generation four-fermion operator contribu-
tions [fb] to tøtt øt production at the LHC

!
s = 13 TeV, with

K -factors (" ! NLO / ! LO ). The SM NLO QCD cross-section
is 13.9+10%

! 20% fb (K = 1 .37).

c1
QQ and c1

tt change sign aroundm(tøt) = 400Ð450 GeV.
Their quark- and gluon-channel components also have
opposite signs across the whole invariant-mass distribu-
tion. Partial cancellations also occur, for c8

QQ , between
quark and gluon channels abovem(tøt) $ 400 GeV and,
for c8

Qt , between the bøb channel and others. Although
these NLO dependencies are small, they could potentially
be isolated by exploiting di! erential distributions in tøt Þ-
nal states. It is instructive to compare these sensitivities
to those of tøtt øt production. To facilitate a comparison
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4top to top pair
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4top with SMEFT@NLO

3

Applications While including entirely new ele-
ments, the present implementation is built on earlier
NLO developments tailored to speciÞc applications: top-
quark FCNC [22Ð24], SMEFT e! ects in tøt [25], tøtH and
gg ! Hj, HH [26], tøtZ and gg ! ZH [27], tj [28, 29],
gg ! H in conjunction with analytic two-loop computa-
tions [30], multi-jet [ 31], EW Higgs production [32], and
tHj, tZj [33]. Global Þts in the top-quark sector [34, 35]
have recently made use of NLO predictions obtained with
a development version ofSMEFT@NLO .

The number of possible applications is too vast to be
presented in a comprehensive way in this Letter. We
therefore provide selected novel examples relevant for
top-quark, electroweak, and Higgs-boson phenomenol-
ogy at the LHC and future colliders, focusing on the
importance of NLO e! ects. Numerical results assume
ci / " 2 = 1 TeV ! 2. For concision, at O(" ! 4), we only
quote the ci cj dependencies fori = j . Unless otherwise
speciÞed, we Þx the factorization and both renormaliza-
tion scales to a common value: the sum of Þnal-state
masses divided by two. Uncertainty envelopes are ob-
tained from the separate variations of renormalization
and factorization scales by factors of two up and down
and are quoted in percent. The operator coe# cients are
not evolved. Monte Carlo errors on the last signiÞcant
digit are indicated between parentheses, if they exceed
5%. The NLO sets of NNPDF3.0 [36] are used as par-
ton distribution functions, with ! S (M Z ) = 0 .118. LO
sets are however employed for tree-level and loop-induced
processes. Other relevant parameters aremt = 173 GeV,
mh = 125 GeV, mZ = 91.1876 GeV, mW = 80.41 GeV
and GF = 1 .16637" 10! 5 GeV! 2.

As a Þrst application, we present inTable I the four-
fermion contributions to tøt production at the LHC

#
s =

13 TeV. The NLO computation allows us to extract, for
the Þrst time, the interference of color-singlet operators
with leading QCD contributions. For O(1) coe# cients,
these are typically small, compared to theO(" ! 4) terms
and to the SM cross-section. We also compute their in-
terferences up to NLO in QCD with SM electroweak pro-
duction, which are comparable. One aspect worth not-
ing is that NLO corrections break the LO degeneracy
between various color-octet operators, which could be
crucial in global Þts, see for instance Ref. [34]. An-
other interesting possibility that opens up at NLO is
to probe the third-generation four-quark operators (last
Þve rows in Table I), using t/b -loop induced e! ects in
gg/qøq-initiated channels. They are otherwise mainly con-
strained by tøtbøb and tøtt øt production. Operators involving
doublets already contribute at LO in the bøb ! tøt channel,
but suppressed by theb-quark luminosity. Remarkably,
the linear NLO contributions span two orders of magni-
tude. Cancellations occur between partonic channels and
phase-space regions for all coe# cients other than c1

Qt and
lead to an order-of-magnitude suppression forc1

QQ . As
shown in Figure 1, the contributions from color-singlet

ci
O ( ! ! 2 ) O ( ! ! 4 )

LO NLO LO NLO

c8
tu 4.27+11%

! 9%
4.06+1%

! 3%
1.04+6%

! 5%
1.03+2%

! 2%

c8
td 2.79+11%

! 9%
2.77+1%

! 3%
0.577+6%

! 5%
0.611+3%

! 2%

c8
tq 6.99+11%

! 9%
6.67+1%

! 3%
1.61+6%

! 5%
1.29+3%

! 2%

c8
Qu 4.26+11%

! 9%
3.93+1%

! 4%
1.04+6%

! 5%
0.798+3%

! 3%

c8
Qd 2.79+11%

! 9%
2.93+0%

! 1%
0.58+6%

! 5%
0.485+2%

! 2%

c8, 1
Qq 6.99+11%

! 9%
6.82+1%

! 3%
1.61+6%

! 5%
1.69+3%

! 3%

c8, 3
Qq 1.50+10%

! 9%
1.32+1%

! 3%
1.61+6%

! 5%
1.57+2%

! 2%

c1
tu [0.67+1%

! 1%
] ! 0.078(7) +31%

! 23%
[0.41+13%

! 17%
] 4.66+6%

! 5%
5.92+6%

! 5%

c1
td [! 0.21+1%

! 2%
] ! 0.306+30%

! 22%
[! 0.15+10%

! 13%
] 2.62+6%

! 5%
3.46+5%

! 5%

c1
tq [0.39+0%

! 1%
] ! 0.47+24%

! 18%
[0.50+3%

! 2%
] 7.25+6%

! 5%
9.36+6%

! 5%

c1
Qu [0.33+0%

! 0%
] ! 0.359+23%

! 17%
[0.57+6%

! 5%
] 4.68+6%

! 5%
5.96+6%

! 5%

c1
Qd [! 0.11+0%

! 1%
] 0.023(6) +114%

! 75%
[! 0.19+6%

! 5%
] 2.61+6%

! 5%
3.46+5%

! 5%

c1, 1
Qq [0.57+0%

! 1%
] ! 0.24+30%

! 22%
[0.39+9%

! 12%
] 7.25+6%

! 5%
9.34+5%

! 5%

c1, 3
Qq [1.92+1%

! 1%
] 0.088(7) +28%

! 20%
[1.05+17%

! 22%
] 7.25+6%

! 5%
9.32+5%

! 5%

c8
QQ 0.0586+27%

! 25%
0.125+10%

! 11%
0.00628+13%

! 16%
0.0133+7%

! 5%

c8
Qt 0.0583+27%

! 25%
! 0.107(6) +40%

! 33%
0.00619+13%

! 16%
0.0118+8%

! 5%

c1
QQ [! 0.11+15%

! 18%
] ! 0.039(4) +51%

! 33%
[! 0.12+7%

! 5%
] 0.0282+13%

! 16%
0.0651+5%

! 6%

c1
Qt [! 0.068+16%

! 18%
] ! 2.51+29%

! 21%
[! 0.12+3%

! 6%
] 0.0283+13%

! 16%
0.066+5%

! 6%

c1
tt " 0.215+23%

! 18%
" "

TABLE I. Four-fermion contributions [pb] to top-quark pair
production, at linear and quadratic levels, LO and NLO, in-
cluding QCD scale uncertainties, for the LHC

!
s = 13 TeV

and ci / ! 2 = 1 TeV ! 2. The two-light two-heavy color-singlet
operators (second block) only interfere at NLO with the lead-
ing QCD contribution. The numbers in square brackets cor-
respond to the interference with the EW contribution. The
operators in the third block involve only third-generation
quarks. Non-vanishing contributions at O(! ! 2) and LO from
these operators can arise through thebøb initial state. The SM
NLO QCD cross-section is 744+12%

! 12% pb.

ci
O ( ! ! 2 ) O ( ! ! 4 )

LO NLO K LO NLO K

c8
QQ 0.126+61%

! 35%
0.089+8%

! 66%
0.71 0.170+53%

! 32%
0.165+3%

! 26%
0.97

c8
Qt 0.421+63%

! 35%
0.295+9%

! 69%
0.70 0.498+52%

! 32%
0.333+15%

! 75%
0.67

c1
QQ 0.373+62%

! 35%
0.20(1) +23%

! 115%
0.53 1.513+53%

! 32%
1.40+3%

! 32%
0.93

c1
Qt ! 0.007(1) +88%

! 84%
! 0.14(3) +83%

! 40%
21 2.061+53%

! 32%
1.89+3%

! 33%
0.92

c1
tt 0.741+61%

! 35%
0.42(3) +18%

! 101%
0.57 6.08+53%

! 32%
5.65+3%

! 30%
0.93

TABLE II. Third-generation four-fermion operator contribu-
tions [fb] to tøtt øt production at the LHC

!
s = 13 TeV, with

K -factors (" ! NLO / ! LO ). The SM NLO QCD cross-section
is 13.9+10%

! 20% fb (K = 1 .37).

c1
QQ and c1

tt change sign aroundm(tøt) = 400Ð450 GeV.
Their quark- and gluon-channel components also have
opposite signs across the whole invariant-mass distribu-
tion. Partial cancellations also occur, for c8

QQ , between
quark and gluon channels abovem(tøt) $ 400 GeV and,
for c8

Qt , between the bøb channel and others. Although
these NLO dependencies are small, they could potentially
be isolated by exploiting di! erential distributions in tøt Þ-
nal states. It is instructive to compare these sensitivities
to those of tøtt øt production. To facilitate a comparison
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¥ Automated FR & ME for BSM 

¥ What next?  

¥ More pheno 

¥ More validation (Comparison of EFT@NLO MG/Recola) 

¥ include running for BSM 

¥ ? 

¥ I did not discuss :  

¥ The Feynman rules for the SMEFT in the background field gauge, Corbet, 
2010.15852 

¥ É

Summary 

https://arxiv.org/abs/2010.15852
https://arxiv.org/abs/2010.15852


C. Degrande

Where is new physics?



C. Degrande

Automated tools

Thank you


