pyhf: pure-Python implementation of HistFactory with tensors and automatic differentiation

Matthew Feickert
(University of Illinois at Urbana-Champaign)

matthew.feickert@cern.ch

Tools for High Energy Physics and Cosmology 2020 Workshop

November 3rd, 2020

pyhf team

Lukas Heinrich CERN

Matthew Feickert
Illinois

Giordon Stark
UCSC SCIPP

Goals of physics analysis at the LHC

Search for new physics

Make precision measurements

Provide constraints on models through setting best limits

- All require **building statistical models** and **fitting models** to data to perform statistical inference
- Model complexity can be huge for complicated searches
- Problem: Time to fit can be many hours
- Goal: Empower analysts with fast fits and expressive models

HistFactory Model

- A flexible probability density function (p.d.f.) template to build statistical models in high energy physics
- Developed in 2011 during work that lead to the Higgs discovery [CERN-OPEN-2012-016]
- Widely used by the HEP community for **measurements of known physics** (Standard Model) and **searches for new physics** (beyond the Standard Model)

HistFactory Template

$$f\left(ext{data}| ext{parameters}
ight) = f\left(ec{n},ec{a}|ec{\eta},ec{\chi}
ight) = \prod_{c \, \in \, ext{channels}} \prod_{b \, \in \, ext{bins}_c} ext{Pois}\left(n_{cb}|
u_{cb}\left(ec{\eta},ec{\chi}
ight)
ight) \prod_{\chi \, \in \, ec{\chi}} c_{\chi}\left(a_{\chi}|\chi
ight)$$

Use: Multiple disjoint channels (or regions) of binned distributions with multiple samples contributing to each with additional (possibly shared) systematics between sample estimates

Main pieces:

- Main Poisson p.d.f. for simultaneous measurement of multiple channels
- Event rates ν_{cb} (nominal rate ν_{scb}^0 with rate modifiers)
- Constraint p.d.f. (+ data) for "auxiliary measurements"
 - o encode systematic uncertainties (e.g. normalization, shape)
- \vec{n} : events, \vec{a} : auxiliary data, $\vec{\eta}$: unconstrained pars, $\vec{\chi}$: constrained pars

Example: **Each bin** is separate (1-bin) channel, each **histogram** (color) is a sample and share a **normalization systematic** uncertainty

HistFactory Template

$$f\left(ec{n},ec{a}|ec{\eta},ec{\chi}
ight) = \prod_{c \,\in\, ext{channels }b \,\in\, ext{bins}_c} ext{Pois}\left(n_{cb}|
u_{cb}\left(ec{\eta},ec{\chi}
ight)
ight) \prod_{\chi \,\in\, ec{\chi}} c_\chi\left(a_\chi|\chi
ight)$$

Mathematical grammar for a simultaneous fit with

- multiple "channels" (analysis regions, (stacks of) histograms)
- each region can have multiple bins
- coupled to a set of constraint terms

This is a mathematical representation! Nowhere is any software spec defined **Until now** (2018), the only implementation of HistFactory has been in ROOT

pyhf: HistFactory in pure Python

pyhf: HistFactory in pure Python

 First non-ROOT implementation of the HistFactory p.d.f. template

DOI 10.5281/zenodo.1169739

- pure-Python library as second implementation of HistFactory
 - \$ pip install pyhf
 - No dependence on ROOT!

- IRIS-HEP supported Scikit-HEP project
- Used for reinterpretation in phenomenology paper (DOI: 10.1007/JHEP04(2019)144) and SModelS
- Used in ATLAS SUSY groups and for internal pMSSM SUSY large scale reinterpretation
- Maybe your experiment too!

Machine Learning Frameworks for Computation

- All numerical operations implemented in **tensor backends** through an API of n-dimensional array operations
- Using deep learning frameworks as computational backends allows for exploitation of auto differentiation (autograd) and GPU acceleration
- As huge buy in from industry we benefit for free as these frameworks are continually improved by professional software engineers (physicists are not)

- Show hardware acceleration giving order of magnitude speedup for some models!
- Improvements over traditional
 - 10 hrs to 30 min; 20 min to 10 sec

Automatic differentiation

With tensor library backends gain access to exact (higher order) derivatives — accuracy is only limited by floating point precision

$$\frac{\partial L}{\partial \mu}, \frac{\partial L}{\partial \theta_i}$$

Exploit **full gradient of the likelihood** with **modern optimizers** to help speedup fit!

Gain this through the frameworks creating computational directed acyclic graphs and then applying the chain rule (to the operations)

Tensor backends offer a computational advantage

For visual comparison: the computational graph of the Higgs discovery analysis from the C++ framework. Image courtesy of Kyle Cranmer.

JSON spec fully describes the HistFactory model

- Human & machine readable declarative statistical models
- Industry standard
 - Will be with us forever
- Parsable by every language
 - Highly portable
 - Bidirectional translation with ROOT
- Versionable and easily preserved
 - JSON Schema describing HistFactory specification
 - Attractive for analysis preservation
 - Highly compressible

```
"channels": [ # List of regions
        { "name": "singlechannel",
          "samples": [ # List of samples in region
            { "name": "signal",
              "data": [20.0, 10.0],
              # List of rate factors and/or systematic uncertainties
              "modifiers": [ { "name": "mu", "type": "normfactor", "data": null} ]
            { "name": "background",
              "data": [50.0, 63.0],
              "modifiers": [ {"name": "uncorr bkguncrt", "type": "shapesys", "data": [5.0, 12.0]} ]
    "observations": [ # Observed data
        { "name": "singlechannel", "data": [55.0, 62.0] }
    "measurements": [ # Parameter of interest
        { "name": "Measurement", "config": {"poi": "mu", "parameters": []} }
    "version": "1.0.0" # Version of spec standard
```

JSON defining a single channel, two bin counting experiment with systematics

ATLAS validation and publication of likelihoods

2		ATLAS Note
	eport number	ATL-PHYS-PUB-2019-029
Т	itle	$Reproducing \ searches \ for \ new \ physics \ with \ the \ ATLAS \ experiment \ through \ publication \ of full \ statistical \ likelihoods$
C	orporate Author(s)	The ATLAS collaboration

New open release allows theorists to explore LHC data in a new way

The ATLAS collaboration releases full analysis likelihoods, a first for an LHC experiment

9 JANUARY, 2020 | By Katarina Anthony

Explore ATLAS open likelihoods on the HEPData platform (Image: CERN)

(CERN, 2020)

JSON Patch for signal model (reinterpretation)

JSON Patch gives ability to **easily mutate model**Think: test a **new theory** with a **new patch**!

(c.f. Lukas Heinrich's RECAST talk from Snowmass 2021 Computational Frontier Workshop)

Combined with RECAST gives powerful tool for **reinterpretation studies**


```
# Using CLI
$ pyhf cls example.json | jq .CLs_obs
0.053994246621274014

$ cat new_signal.json
[{
      "op": "replace",
      "path": "/channels/0/samples/0/data",
      "value": [10.0, 6.0]
}]

$ pyhf cls example.json --patch new_signal.json | jq .CLs_obs
0.3536906623262466
```


Signal model B

Likelihoods preserved on HEPData

- pyhf pallet:
 - Background-only model JSON stored
 - Hundreds of signal model JSON Patches stored together as a pyhf "patch set" file
- Fully preserve and publish the full statistical model and observations to give likelihood
 - with own DOI! DOI 10.17182/hepdata.90607.v3/r3

...can be used from HEPData

- pyhf pallet:
 - Background-only model JSON stored
 - Hundreds of signal model JSON Patches stored together as a pyhf "patch set" file
- Fully preserve and publish the full statistical model and observations to give likelihood
 - with own DOI! DOI 10.17182/hepdata.90607.v3/r3

```
$ pyhf contrib download https://doi.org/10.17182/hepdata.90607.v3/r3 1Lbb-pallet && cd 1Lbb-pallet
$ pyhf patchset verify BkgOnly.json patchset.json
All good.
$ cat BkgOnly.json | \
  pyhf cls --patch <(pyhf patchset extract --name C1N2_Wh_hbb_900_300 patchset.json) | \</pre>
  jq .CLs_obs
0.5004165245329418
$ pyhf patchset extract --name C1N2_Wh_hbb_900_400 --output-file C1N2_Wh_hbb_900_400_patch.json patchset.json
$ pyhf cls --patch C1N2 Wh hbb 900 400 patch.json BkgOnly.json | jg .CLs obs
0.5735007268333779
```

Rapid adoption in ATLAS...

- Five ATLAS analyses with full likelihoods published to HEPData
- ATLAS SUSY will be continuing to publish full Run 2 likelihoods

- direct staus, doi:10.17182/hepdata.89408 (2019)
- sbottom multi-b, doi:10.17182/hepdata.91127 (2019)
- 1Lbb, doi:10.17182/hepdata.92006 (2019)
- 3L eRJR, doi:10.17182/hepdata.90607 (2020)
- ss3L search, doi:10.17182/hepdata.91214 (2020)

...and by theory

- pyhf likelihoods discussed in
 - Les Houches 2019 Physics at TeV Colliders: New Physics Working Group Report
 - Higgs boson potential at colliders: status and perspectives
- SModelS team has implemented a SModelS/pyhf interface [arXiv:2009.01809]
 - tool for interpreting simplifiedmodel results from the LHC
 - designed to be used by theorists
 - SModelS authors giving tutorial later today!

Validation & impact

ATLAS-SUSY-2018-04: TStauStau

Gaël Alguero, SK, Wolfgang Waltenberger,

Full likelihood: very good agreement with official ATLAS result

The remaining small difference is probably due to the (interpolated) $A\times\epsilon$ values from the simplified model efficiency maps not exactly matching the "true" ones of the experimental analysis.

S. Kraml - Feedback on use of public likelihoods - 24 Sep 2020

1

Feedback on use of public Likelihoods, Sabine Kraml (ATLAS Exotics + SUSY Reinterpretations Workshop)

- Have produced three comparisons to published ATLAS likelihoods: ATLAS-SUSY-2018-04, ATLAS-SUSY-2018-31, ATLAS-SUSY-2019-08
 - Compare simplified likelihood (bestSR) to full likelihood (pyhf) using SModelS

Core part of IRIS-HEP Analysis Systems pipeline

- Accelerating fitting (reducing time to insight (statistical inference)!) (pyhf + cabinetry)
- Flexible schema great for open likelihood preservation
 - Likelihood serves as high information-density summary of analysis
- An enabling technology for **reinterpretation** (pyhf + RECAST)

Use in analysis outside of particle physics

- Public data from Fermi Large
 Area Telescope (LAT) analyzed
 by L. Heinrich et al.
- The LAT is a high-energy gamma-ray telescope — the gamma-ray photons come from extreme cosmological events
- Can represent the photons counts in the LAT as a binned model
 - Here full-sky map visualized with healpy's Mollweide projection
 - Think: 2d histogram with special binning

Summary

pyhf provides:

- Accelerated fitting library
 - reducing time to insight/inference!
 - Hardware acceleration on GPUs and vectorized operations
 - Backend agnostic Python API and CLI
- Flexible declarative schema
 - JSON: ubiquitous, universal support, versionable
- Enabling technology for reinterpretation
 - JSON Patch files for efficient computation of new signal models
 - Unifying tool for theoretical and experimental physicists
- Project in growing Pythonic HEP ecosystem
 - Openly developed on GitHub and welcome contributions
 - Comprehensive open tutorials
 - Ask us about Scikit-HEP and IRIS-HEP!

Thanks for listening!

Come talk with us!

www.scikit-hep.org/pyhf

Backup

HistFactory Template (in more detail)

$$f\left(ec{n},ec{a}|ec{\eta},ec{\chi}
ight) = \prod_{c \,\in\, ext{channels } b \,\in\, ext{bins}_c} ext{Pois}\left(n_{cb}|
u_{cb}\left(ec{\eta},ec{\chi}
ight)
ight) \prod_{\chi \,\in\, ec{\chi}} c_\chi\left(a_\chi|\chi
ight)$$

$$u_{cb}(ec{\eta},ec{\chi}) = \sum_{s \, \in \, ext{samples}} \underbrace{\left(\sum_{\kappa \, \in \, ec{\kappa}} \kappa_{scb}(ec{\eta},ec{\chi})
ight)}_{ ext{multiplicative}} \left(
u_{scb}^0(ec{\eta},ec{\chi}) + \sum_{\Delta \, \in \, ec{\Delta}} \Delta_{scb}(ec{\eta},ec{\chi})
ight)$$

Use: Multiple disjoint channels (or regions) of binned distributions with multiple samples contributing to each with additional (possibly shared) systematics between sample estimates

Main pieces:

- Main Poisson p.d.f. for simultaneous measurement of multiple channels
- ullet Event rates u_{cb} from nominal rate u_{scb}^0 and rate modifiers κ and Δ
- Constraint p.d.f. (+ data) for "auxiliary measurements"
 - encoding systematic uncertainties (normalization, shape, etc)
- \vec{n} : events, \vec{a} : auxiliary data, $\vec{\eta}$: unconstrained pars, $\vec{\chi}$: constrained pars

Why is the likelihood important?

- High information-density summary of analysis
- Almost everything we do in the analysis ultimately affects the likelihood and is encapsulated in it
 - Trigger
 - Detector
 - Combined Performance / Physics Object Groups
 - Systematic Uncertainties
 - Event Selection
- Unique representation of the analysis to reuse and preserve

Full likelihood serialization...

...making good on 19 year old agreement to publish likelihoods

Massimo Corradi

It seems to me that there is a general consensus that what is really meaningful for an experiment is *likelihood*, and almost everybody would agree on the prescription that experiments should give their likelihood function for these kinds of results. Does everybody agree on this statement, to publish likelihoods?

Louis Lyons

Any disagreement? Carried unanimously. That's actually quite an achievement for this Workshop.

(1st Workshop on Confidence Limits, CERN, 2000)

This hadn't been done in HEP until 2019

- In an "open world" of statistics this is a difficult problem to solve
- What to preserve and how? All of ROOT?
- Idea: Focus on a single more tractable binned model first

References

- 1. F. James, Y. Perrin, L. Lyons, Workshop on confidence limits: Proceedings, 2000.
- 2. ROOT collaboration, K. Cranmer, G. Lewis, L. Moneta, A. Shibata and W. Verkerke, *HistFactory: A tool for creating statistical models for use with RooFit and RooStats*, 2012.
- 3. L. Heinrich, H. Schulz, J. Turner and Y. Zhou, Constraining A_4 Leptonic Flavour Model Parameters at Colliders and Beyond, 2018.
- 4. A. Read, Modified frequentist analysis of search results (the ${
 m CL}_s$ method), 2000.
- 5. K. Cranmer, CERN Latin-American School of High-Energy Physics: Statistics for Particle Physicists, 2013.
- 6. ATLAS collaboration, Search for bottom-squark pair production with the ATLAS detector in final states containing Higgs bosons, b-jets and missing transverse momentum, 2019
- 7. ATLAS collaboration, *Reproducing searches for new physics with the ATLAS experiment through publication of full statistical likelihoods*, 2019
- 8. ATLAS collaboration, Search for bottom-squark pair production with the ATLAS detector in final states containing Higgs bosons, b-jets and missing transverse momentum: HEPData entry, 2019

The end.