Multi-interacting dark matter in the Boltzmann code CLASS

Deanna C. Hooper

Loosely based on Becker, **DCH**, Kahlhoefer, Lesgourgues, Schöneberg (2010.04074)

TOOLS 2020 4th November 2020

What is CLASS?

- Code designed to simulate the evolution of linear perturbations in the universe
- End goal: compute cosmological observables (CMB and matter power spectra) for a given model
- Modular, modern, easy to use and modify, fast
- Written in C with an object-oriented style, and with a python wrapper to interface with MontePython
- Features many different cosmological models

What is CLASS?

- Code designed to simulate the evolution of linear perturbations in the universe
- End goal: compute cosmological observables (CMB and matter power spectra) for a given model
- Modular, modern, easy to use and modify, fast
- Written in C with an object-oriented style, and with a python wrapper to interface with MontePython
- Features many different cosmological models
 Want to play about with CLASS? Check out the tutorial!

Why interacting DM?

- The standard cosmological paradigm has several issues: small scale crisis, H₀ and S₈ tensions, EDGES anomaly
- Many alternatives to cold dark matter have been proposed to solve these, such as interacting dark matter
- Each type of interaction can provide different benefits
- We want to see if we can combine these effects
- We have implemented dark matter with multiple possible interaction channels in CLASS

DM - baryon interactions

- We have implemented DM baryon interactions with a power-law dependence on the relative bulk velocity (*Dvorkin et al. 1311.2937, Muñoz et al. 1509.00029, Slatyer et al. 1803.09734*)
- DM and baryons are assumed to be non-relativistic ($m_{\rm DM} \ge 1$ MeV), and following a Maxwell velocity distribution
- We consider a momentum transfer cross section of the form

$$\sigma = \sigma_{\rm DM-b} v^{n_b}$$

• We consider $n_b = \{-4,4\}$. Well-motivated cases include $n_b = 0$ (contact interactions) and $n_b = -4$ (milicharged, may explain EDGES)

DM - photon interactions

- We consider DM photon interactions similar to the standard Thomson scattering (*Wilkinson et al. 1309.7588, Stadler et al.* 1803.10229)
- We assume the interactions are independent of temperature
- We parametrise the scattering cross section relative to the Thompson cross section as

$$u_{\rm DM-\gamma} = \frac{\sigma_{\rm DM-\gamma}}{\sigma_{\rm Th}} \left(\frac{m_{\rm DM}}{100 {\rm GeV}}\right)^{-1}$$

• Suppress the matter power spectrum, may solve the S₈ tension

DM - dark radiation interactions

- DM DR interactions were implemented in CLASS v2.9 (Archidiacono, DCH, et al. 1907.01496)
- For general interactions, implementation based on the ETHOS formalism (*Cyr-Racine et al. 1512.05344*)
- DR is assumed to be massless and not interacting with SM particles. Can be either free-streaming or fluid-like
- Parameters: current momentum exchange rate $\Gamma_{\rm DM-DR}^0$, amount of dark radiation $N_{\rm DR}$, temperature dependence of scattering rate $n_{\rm DR}$
- Case of $n_{DR} = 0$ may solve H₀ and S₈ tensions (*Buen-Abad et al.* 1505.03542)

Multi-interacting DM in CLASS

- We consider one dark matter species with multiple possible interaction channels
- CLASS now integrates the dark matter temperature together with normal matter temperature
- An analytic calculation of the decoupling redshifts ensures an early enough start without wasting computing time
- Special treatment for different tight coupling regimes
- This implementation allows us to study the imprint of multiinteracting dark matter on cosmological observables

Effects on the observables

Deanna C. Hooper - Université Libre de Bruxelles

Effects on the observables

TOOLS, November 2020

Code efficiency

Case	Runtime [s]	% Slowdown
ACDM	0.936	0.0
DM-b $(n_b = -4)$	0.959	2.4
DM-b $(n_b = -2)$	0.949	1.4
DM-b $(n_b = 0)$	0.950	1.5
$DM-\gamma$	0.940	0.4
DM–DR, $n_{\rm DR} = 0$, fluid DR	1.307	39.6
DM–DR, $n_{\rm DR} = 0$, free-streaming DR	2.181	132.9
DM–DR, $n_{\rm DR} = 4$, fluid DR	1.622	73.3
DM–DR, $n_{\rm DR} = 4$, free-streaming DR	4.082	336.0
DM-b $(n_b = -4)$ +DM- γ	0.994	6.1
DM-b $(n_b = -2)$ +DM- γ	0.982	4.9
DM-b $(n_b = 0)$ +DM- γ	0.983	4.9
DM-b $(n_b = -4)$ +DM-DR, $n_{DR} = 0$, fluid DR	1.360	45.3
DM-b $(n_b = -2)$ +DM-DR, $n_{DR} = 0$, fluid DR	1.374	46.7
DM-b $(n_b = 0)$ +DM-DR, $n_{DR} = 0$, fluid DR	1.340	43.1
$DM-\gamma+DM-DR$	1.356	44.8
DM-b $(n_b = -4)$ +DM- γ +DM-DR, $n_{DR} = 0$, fluid DR	1.590	69.8
DM-b $(n_b = -2)$ +DM- γ +DM-DR, $n_{DR} = 0$, fluid DR	1.378	47.2
DM-b $(n_b = 0)$ +DM- γ +DM-DR, $n_{DR} = 0$, fluid DR	1.396	49.1

We can run MCMCs for IDM with MontePython

Code efficiency

a	D (' []	07 01 1	
Case	Runtime [s]	% Slowdown	
ACDM	0.936	0.0	
DM-b $(n_b = -4)$	0.959	2.4	
DM-b $(n_b = -2)$	0.949	1.4	
DM-b $(n_b = 0)$	0.950	1.5	
$DM-\gamma$	0.940	0.4	
DM–DR, $n_{\rm DR} = 0$, fluid DR	1.307	39.6	
DM–DR, $n_{\rm DR} = 0$, free-streaming DR	2.181	132.9	
DM–DR, $n_{\rm DR} = 4$, fluid DR	1.622	73.3	
DM–DR, $n_{\rm DR} = 4$, free-streaming DR	4.082	336.0	
DM-b $(n_b = -4)$ +DM- γ	0.994	6.1	
DM-b $(n_b = -2)$ +DM- γ	0.982	4.9	
DM-b $(n_b = 0)$ +DM- γ	0.983	4.9	
DM-b $(n_b = -4)$ +DM-DR, $n_{DR} = 0$, fluid DR	1.360	45.3	
DM-b $(n_b = -2)$ +DM-DR, $n_{DR} = 0$, fluid DR	1.374	46.7	
DM-b $(n_b = 0)$ +DM-DR, $n_{DR} = 0$, fluid DR	1.340	43.1	
$DM-\gamma+DM-DR$	1.356	44.8	
DM-b $(n_b = -4)$ +DM- γ +DM-DR, $n_{DR} = 0$, fluid DR	1.590	6	
DM-b $(n_b = -2)$ +DM- γ +DM-DR, $n_{DR} = 0$, fluid DR	1.378		talk by
DM-b $(n_b = 0)$ +DM- γ +DM-DR, $n_{DR} = 0$, fluid DR	1.396		
		Brin	ckmanr

We can run MCMCs for IDM with MontePython

Code efficiency

Case	Runtime [s]	% Slowdown
ACDM	0.936	0.0
DM-b $(n_b = -4)$	0.959	2.4
DM-b $(n_b = -2)$	0.949	1.4
DM-b $(n_b = 0)$	0.950	1.5
$DM-\gamma$	0.940	0.4
DM–DR, $n_{\rm DR} = 0$, fluid DR	1.307	39.6
DM–DR, $n_{\rm DR} = 0$, free-streaming DR	2.181	132.9
DM–DR, $n_{\rm DR} = 4$, fluid DR	1.622	73.3
DM–DR, $n_{\rm DR} = 4$, free-streaming DR	4.082	336.0
DM-b $(n_b = -4)$ +DM- γ	0.994	6.1
DM-b $(n_b = -2)$ +DM- γ	0.982	4.9
DM-b $(n_b = 0)$ +DM- γ	0.983	4.9
DM-b $(n_b = -4)$ +DM-DR, $n_{DR} = 0$, fluid DR	1.360	45.3
DM-b $(n_b = -2)$ +DM-DR, $n_{DR} = 0$, fluid DR	1.374	46.7
DM-b $(n_b = 0)$ +DM-DR, $n_{DR} = 0$, fluid DR	1.340	43.1
$DM-\gamma+DM-DR$	1.356	44.8
DM-b $(n_b = -4)$ +DM- γ +DM-DR, $n_{DR} = 0$, fluid DR	1.590	69.8
DM-b $(n_b = -2)$ +DM- γ +DM-DR, $n_{DR} = 0$, fluid DR	1.378	47.2
DM-b $(n_b = 0)$ +DM- γ +DM-DR, $n_{DR} = 0$, fluid DR	1.396	49.1

We can run MCMCs for IDM with MontePython

IDM cross sections

Cosmological tensions

- DM photon interactions push to a lower S₈ than ACDM
- DM DR interactions push to higher H₀ than ΛCDM
- Together they allow for both higher H₀ and lower S₈ values
- Comes at the expense of three new parameters

Summary

- CLASS is a flexible, fast, and user-friendly Boltzmann code designed to compute the cosmological observables for different models
- Many models already implemented, including dark matter decay, annihilation, and now multiple interaction channels
- We have used this to show that the effects of different interactions on the cosmological observables are additive
- Such interacting models can solve both the H₀ and S₈ tensions, but at the expense of adding three new parameters
- The public release of our code as CLASS v3.1 paves the way for the study of various rich dark sectors

Thank you for your attention

CLASS structure

- 1. input.c: parse/make sense of input parameters (advanced logic)
- 2. background.c: calculate homogeneous cosmology
- 3. thermodynamics.c: ionisation history, scattering rates, temperatures
- 4. perturbations.c: linear Fourier perturbations
- 5. primordial.c: primordial spectrum, inflation
- 6. nonlinear.c: recipes for non-linear corrections to 2-point statistics
- 7. transfer.c: from Fourier to multipole space
- 8. spectra.c: 2-point statistics (power spectra)
- 9. lensing.c: CMB lensing
- 10. output.c: print out (not used from python)

IDM temperature evolution

DM – DR and DM – baryon interactions

IDM temperature evolution

DM – photon and DM – baryon interactions

IDM cross sections

Becker, **DCH**, et al. 2010.04074

Case	DM-b	DM–b	DM-b	$DM-\gamma$	DM–DR
Index	$n_b = -4$	$n_b = -2$	$n_b = 0$	-	$n_{\rm DR} = 0$
Parameter	$\sigma_{{ m DM-}b}$	$\sigma_{{ m DM-}b}$	$\sigma_{{ m DM-}b}$	$u_{{ m DM}-\gamma}$	$\Gamma^0_{\rm DM-DR}$
Units	$[10^{-41} \text{cm}^2]$	$[10^{-33} \text{cm}^2]$	$[10^{-25} \text{cm}^2]$	$[10^{-4}]$	$[10^{-8}]$
DM-b $(n_b = -4)$	2.7	-	-	-	-
DM-b $(n_b = -2)$	-	3.6	-	-	-
DM-b $(n_b = 0)$	-	-	2.2	-	-
$DM-\gamma$	-	-	-	1.8	-
DM–DR	-	-	-	-	6.2
DM-b $(n_b = -4)$ +DM- γ	2.7	-	-	1.9	-
DM-b $(n_b = -2)$ +DM- γ	-	3.7	-	1.8	-
DM-b $(n_b = 0)$ +DM- γ	-	-	2.3	1.7	-
DM-b $(n_b = -4)$ +DM-DR	2.4	-	-	-	5.6
DM-b $(n_b = -2)$ +DM-DR	-	3.1	-	-	6.0
$DM-b (n_b = 0)+DM-DR$	-	-	1.9	-	6.7
$DM-\gamma + DM-DR$	-	-	-	1.6	5.5
DM-b $(n_b = -4)$ +DM- γ +DM-DR	2.5	-	-	1.7	5.4
DM-b $(n_b = -2)$ +DM- γ +DM-DR	-	3.4	-	1.7	6.0
DM-b $(n_b = 0)$ +DM- γ +DM-DR	-	-	1.9	1.5	6.1

Solving S₈ and H₀ tensions?

- Case of n = 0 may solve both tensions (e.g. Buen-Abad et al. 1505.03542)
- DR acts like extra $N_{eff} \rightarrow H_0$ increases to maintain z_{eq}
- Unlike with massive neutrinos, DR is always relativistic \rightarrow late time background history unaffected (relative to $\Lambda CDM + N_{eff}$)
- DM-DR behaves as coupled fluid at early times, enhances peaks on small scales, compensates damping introduced by new relativistic particle
- Collisional damping with DR suppresses DM growth, leading to a small scale matter power suppression → lower S₈
- Matter power spectrum like ΛCDM up to some suppression feature in k, no effect on lensing