MadDM v.3.0 - Tutorial

Jan Heisig (UCL - CP3)
on behalf of the
MadDM collaboration

Chargé de fors recherches

F. Ambrogi, C. Arina, M. Backovic, JH, F. Maltoni, L. Mantani, O. Mattelaer, G. Mohlabeng, 1804.00044, Phys. Dark Univ. (2019)

Capabilities

MadDM capabilities

Relic density (MadDM v.1.0) [Backovic, Kong, McCaskey 2013]

- Coannihilation
- Multi-component dark matter

Direct detection (MadDM v.2.0)

- Theoretical elastic spin-independent and spin-dependent cross section dark matter off nucleons
- Directional event rate (double differential event rate)
- LUX likelihood

Indirect detection (MadDM v.3.0)

- Theoretical prediction for the velocity averaged cross section at present time
- Generation of energy spectra from dark matter annihilation
- Computation of fluxes at source and detection
- Fermi-LAT likelihood for dwarf spheroidal galaxies

Model parameter space sampling (MadDM v.3.0)

- Sequential grid scan
- PyMultiNest interface

Experimental constraints module (MadDM v.3.0)

For a generic dark matter model with UFO files

Capabilities

MadDM capabilities

Relic density (MadDM v.1.0)

- Coannihilation
- Multi-component dark matter

<u>Direct detection</u> (MadDM v.2.0) [Backovic, Kong, Martini, Mattelaer, McCaskey, Mohlabeng 2015]

- Theoretical elastic spin-independent and spin-dependent cross section dark matter off nucleons
- Directional event rate (double differential event rate)
- · LUX likelihood

Indirect detection (MadDM v.3.0)

- Theoretical prediction for the velocity averaged cross section at present time
- Generation of energy spectra from dark matter annihilation
- Computation of fluxes at source and detection
- Fermi-LAT likelihood for dwarf spheroidal galaxies

Model parameter space sampling (MadDM v.3.0)

- Sequential grid scan
- PyMultiNest interface

Experimental constraints module (MadDM v.3.0)

For a generic dark matter model with UFO files

Capabilities

MadDM capabilities Relic density (MadDM v.1.0) Coannihilation Multi-component dark matter generic dark matter model with UFO files Direct detection (MadDM v.2.0) Theoretical elastic spin-independent and spin-dependent cross section dark matter off nucleons Directional event rate (double differential event rate) LUX likelihood [F. Ambrogi, C. Arina, M. Backovic, JH, F. Maltoni, L. Mantani, O. Mattelaer, Indirect detection (MadDM v.3.0) G. Mohlabeng, arXiv:1804.00044] Theoretical prediction for the velocity averaged cross section at present time Generation of energy spectra from dark matter annihilation Computation of fluxes at source and detection Fermi-LAT likelihood for dwarf spheroidal galaxies Model parameter space sampling (MadDM v.3.0) For a Sequential grid scan PyMultiNest interface

Experimental constraints module (MadDM v.3.0)

MadDM capabilities Relic density (MadDM v.1.0) Coannihilation Multi-component dark matter

etiautomatized computation
etiautomatized computates
ion of ener Openia
ion of fluxes
iiketik Theoretical elastic spin dark matter off nucleon

Directional c

LUX 1;1

The

For a generic dark matter model with UFO files

averaged cross section at present time

Gene Comp

of or dwarf spheroidal galaxies Fermi-L

Model parameter space sampling (MadDM v.3.0)

- Sequential grid scan
- PyMultiNest interface

Experimental constraints module (MadDM v.3.0)

MadDM

Relic density

Direct detection

Indirect detection

MadGraph5_aMC@NLO

- + phase-space integrator
- + Boltzmann solver

MadDM

Relic density

Direct detection

Indirect detection

MadGraph5_aMC@NLO

- MadEvent

Pythia8
Dragon2

Many dark-matter models available: http://feynrules.irmp.ucl.ac.be/ FeynRules wiki/ModelDatabaseMainPage

MadDM

Relic density Direct detection

Indirect detection

MadGraph5 aMC@NLO - MadEvent Pythia8 Dragon2

Code structure and user interface

- MadDM is plugin of MadGraph5_aMC@NLO
- Written in Python/Fortran
- Provides command line interface
- Download MadGraph5_aMC@NLO, install plugins via MG_aMC command line (automatic download and installation)

yourdir\$ wget https://launchpad.net/mg5amcnlo/
2.0/2.6.x/+download/MG5_aMC_v2.6.7.tar.gz


```
yourdir$ wget https://launchpad.net/mg5amcnlo/
2.0/2.6.x/+download/MG5_aMC_v2.6.7.tar.gz
yourdir$ tar -xzf MG5_aMC_v2.6.7.tar.gz
yourdir$ cd MG5_aMC_v2_6_7/
MG5_aMC_v2_6_7$ bin/mg5_aMC
```



```
yourdir$ wget https://launchpad.net/mg5amcnlo/
2.0/2.6.x/+download/MG5_aMC_v2.6.7.tar.gz
yourdir$ tar -xzf MG5_aMC_v2.6.7.tar.gz
yourdir$ cd MG5_aMC_v2_6_7/
MG5_aMC_v2_6_7$ bin/mg5_aMC
MG5_aMC> install maddm
MG5_aMC> quit
MG5_aMC_v2_6_7$
```



```
yourdir$ wget https://launchpad.net/mg5amcnlo/
2.0/2.6.x/+download/MG5_aMC_v2.6.7.tar.gz
yourdir$ tar -xzf MG5_aMC_v2.6.7.tar.gz
yourdir$ cd MG5_aMC_v2_6_7/
MG5_aMC_v2_6_7$ bin/mg5_aMC
MG5_aMC> install maddm
MG5_aMC> quit
MG5_aMC_v2_6_7$
```


MG5_aMC_v2_6_7\$ python bin/maddm.py MadDM>

MadDM> import model DMsimp_s_spin0
MadDM>


```
MadDM> import model DMsimp_s_spin0
MadDM> define darkmatter xd
MadDM> generate relic_density
MadDM> add direct_detection
MadDM> add indirect_detection
MadDM>
```



```
MadDM> import model DMsimp_s_spin0
MadDM> define darkmatter xd
MadDM> generate relic_density
MadDM> add direct_detection
MadDM> add indirect_detection
MadDM> output PROC_myprocess
```



```
MadDM> import model DMsimp_s_spin0
MadDM> define darkmatter xd
MadDM> generate relic_density
MadDM> add direct_detection
MadDM> add indirect_detection
MadDM> output PROC_myprocess
MadDM> launch PROC_myprocess
```


MadDM> launch PROC myprocess

MadDM> launch PROC myprocess

> 3

Passing everything as text file

MG5_aMC_v2_6_7\$ python bin/maddm.py run.txt

```
import model DMsimp_s_spin0
define darkmatter xd
generate indirect_detection
output PROC_myprocess
launch PROC_myprocess
3
set sigmav_method = madevent
set MXd 500
```

Passing everything as text file

```
MG5_aMC_v2_6_7$ python bin/maddm.py run1.txt MG5_aMC_v2_6_7$ python bin/maddm.py run2.txt
```

```
import model DMsimp_s_spin0
define darkmatter xd
generate indirect_detection
output PROC_myprocess
----- run2.txt -----
launch PROC_myprocess
3
set sigmav_method = madevent
set MXd 500
```

Passing everything as text file

```
MG5_aMC_v2_6_7$ python bin/maddm.py run1.txt
MG5_aMC_v2_6_7$ python bin/maddm.py run2.txt
```

Sequential grid scan in MadDM

```
MadDM> launch PROC_myprocess
> set MXd scan:range(50,700,25)
```

```
import model DMsimp_s_spin0
define darkmatter xd
generate indirect_detection
output PROC_myprocess
----- run2.txt -----
launch PROC_myprocess
3
set sigmav_method = madevent
set MXd 500
```

Passing everything as text file

```
MG5_aMC_v2_6_7$ python bin/maddm.py run1.txt
MG5_aMC_v2_6_7$ python bin/maddm.py run2.txt
```

Sequential grid scan in MadDM

```
MadDM> launch PROC_myprocess
> set MXd scan:range(50,700,25)
```

 Employing Multinest scan (Bayesian inference tool)

```
MadDM> launch PROC_myprocess
> nestscan = 0N
...and set multinest parameters
in multinest card.dat
```

```
import model DMsimp_s_spin0
define darkmatter xd
generate indirect_detection
output PROC_myprocess

----- run2.txt -----
launch PROC_myprocess
3
set sigmav_method = madevent
set MXd 500
```

More Details

Relic density, Direct detection, Indirect detection

Relic density

Compute scattering rates

Solve Boltzmann equation

MadDM> define darkmatter xd
MadDM> define coannihilator xr
MadDM> gernerate relic_density

```
**** Relic Density
                                                output
                                                             run_01
                                                                          maddm_card.dat
           0.000325869586293
OMEGA IS
                                                             run_02
                                                                          MadDM_results.txt
INFO: Relic Density = 3.26e-04 ALLOWED
                                                                          maddm.out
INFO: x f
                      = 2.80e+01
                                                                          Output_Indirect
INFO: sigmav(xf) = 2.81e-07
INFO: xsi
                      = 2.72e-03
```

Direct detection of WIMP dark matter

• Elastic scattering of WIMPs off nuclei:

• Recoil energy threshold $E_{\rm R} \sim {\rm few} \ 10 \, {\rm keV}$

$$E_{\rm R} = \frac{q^2}{2m_N}, \ q_{\rm max} = 2m_{\chi}v$$
 $v \sim 10^{-3}$

■ Two modes:

direct = direct / direct = directional

- i) 'direct' mode:
 - Computation of spin-independent and -dependent dark-matter-nucleus cross sections $\sigma_{\chi N}$
 - Together with corresponding experimental limits

```
**** Relic Density
OMEGA IS 0.000325869586293
INFO: Relic Density
                          = 3.26e-04
                                         ALLOWED
INFO: x f
                          = 2.80e+01
INFO: sigmav(xf)
                          = 2.81e-07
INFO: xsi
                          = 2.72e-03
***** Direct detection [cm^2]:
                                                                                  Xenon1ton ul = 6.44e-46
INFO: Sigman SI p
                   Thermal = 2.01e-50
                                                    All DM = 7.40e-48
                                                                        ALLOWED
                                         ALLOWED
INFO: SigmaN SI n
                   Thermal = 1.98e-50
                                         ALLOWED
                                                    All DM = 7.27e-48
                                                                        ALLOWED
                                                                                  Xenon1ton ul = 6.44e-46
INFO: SigmaN SD p
                   Thermal = 0.00e+00
                                                    All DM = 0.00e+00
                                                                                  Pico60 ul
                                                                                               = 2.03e-40
                                         ALLOWED
                                                                        ALLOWED
INFO: SigmaN SD n
                   Thermal = 0.00e+00
                                         ALLOWED
                                                    All DM = 0.00e+00
                                                                        ALLOWED
                                                                                  Lux2017 ul
                                                                                               = 1.22e-40
                                            output
                                                             run_01
                                                                                maddm_card.dat
                                                             run_02
                                                                                MadDM_results.txt
                                                                                maddm.out
                                                                                Output_Indirect
```

- ii) 'directional' mode:
 - Same as 'direct' plus differential recoil rate:

$$\frac{\mathrm{d}^2 R}{\mathrm{d}E_{\mathrm{R}}\,\mathrm{d}\cos\theta}(E_{\mathrm{R}},\theta,t)$$

Binned in recoil energy, scattering angle and time

- ii) 'directional' mode:
 - Same as 'direct' plus differential recoil rate:

plus differential recoil rate:
$$\frac{\mathrm{d}^2 R}{\mathrm{d} E_\mathrm{R} \, \mathrm{d} \cos \theta}(E_\mathrm{R}, \theta, t)$$
Incident direction

Recoil direction

Recoil direction

Scattering

Binned in recoil energy, scattering angle and time

Indirect detection of WIMP dark matter

Indirect detection of WIMP dark matter

Fermi-LAT, HESS, MAGIC, VERITAS, MAGIC, CHAW,

E.g. for gammas:

$$\frac{\mathrm{d}\Phi}{\mathrm{d}E_{\gamma}}(E_{\gamma}) = \frac{1}{2m_{\chi}^{2}} \sum_{i} \left(\frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}}\right)_{i} \langle \sigma v \rangle_{i} \frac{1}{4\pi} \int_{\theta} \mathrm{d}\Omega \int_{\mathrm{los}} \mathrm{d}l \, \rho^{2}(\theta, l)$$

Gamma-spectrum per annihilation

Annihilation cross section

Needed: Prediction for fluxes and spectra for γ , \bar{p} , e^+ , ν

IceCube,
Antares, ...

Prediction for indirect detection fluxes and spectra with MadDM

Pre-computed spectra for γ , \bar{p} , e^+ , ν

Prediction for indirect detection fluxes and spectra with MadDM

Prediction for indirect detection fluxes and spectra with MadDM

Pre-computed spectra ('fast' mode)

Comparison to PPPC 4 DM ID: [Cirelli, Corcella, Hektor, Hütsi, Kadastik, Panci, Raidal, Sala, Strumia 2012]

Constraints: Fermi-LAT dwarfs

Predicted flux in each energy bin:

$$E^{2} \frac{\mathrm{d}\phi}{\mathrm{d}E} = \frac{J}{4\pi} \frac{1}{2m_{\chi}^{2}} \sum_{i} \langle \sigma v \rangle_{i} \int_{E_{\mathrm{min}}}^{E_{\mathrm{max}}} \mathrm{d}E_{\gamma} E_{\gamma} \frac{\mathrm{d}N_{\gamma}^{i}}{\mathrm{d}E_{\gamma}}$$

$$J\text{-factor: } J = \int \mathrm{d}\Omega \int_{\mathrm{l.o.s.}} \mathrm{d}s \, \rho_{\mathrm{DM}}^{2}$$

set vave_indirect 2e-5

Constraints: Fermi-LAT dwarfs

Computation of cross section upper limits:

$$TS = -2\sum_{\text{dwarfs}} \frac{\mathcal{L}(\widehat{J}, \sigma v)}{\mathcal{L}(\widehat{\widehat{J}}, \widehat{\sigma v})}$$

Profiling over *J*-factors

 \rightarrow Likelihood, p-value and σv_{UL} for given point

Propagation of charged cosmic rays

- Fast mode: pre-computed fluxes at Earth from PPPC 4 DM ID indirect_flux_earth_method = PPPC4DMID_ep
- User-friendly interface to Dragon [Evoli, Gaggero, Grasso, Maccione 2008]
 indirect_flux_earth_method = dragon

Indirect detection overview

		Indirect detection module			Experimental constraints
		$<\sigma v>$	Energy Spectra	Flux at Earth	Module available:
Running mode	Fast	$(\sigma \times v) _{v=v_{\mathrm{rel}}}$ Allows only DM DM $ ightarrow 2$ particles	Numerical tables Allows <u>only</u> DM DM → SM SM	Prompt photons Neutrinos Positrons (fixed sets of propagation parameters)	Simplified framework based on the ExpConstraint class
	Precise	Full integration over the DM velocity distribution Allows for any DM annihilation process	Pythia 8 computes on the fly the energy spectra Allows for any DM annihilation process DM DM → n particles	Prompt photons Neutrinos Positrons Anti-protons (free choice of propagation parameters)	Fermi-LAT likelihood for dSPhs + ExpConstraint class

indireck

Signay

Flux Source

flux eares

Indirect detection overview

		Indirect detection module			Experimental constraints
		$<\sigma v>$	Energy Spectra	Flux at Earth	Module available:
Running mode	Fast	$(\sigma imes v) _{v=v_{ m rel}}$ Allows only DM DM $ ightarrow 2$ particles	Numerical tables Allows only $DM DM \rightarrow SM SM$	Prompt photons Neutrinos Positrons (fixed sets of propagation parameters)	Simplified framework based on the ExpConstraint class
	Precise	Full integration over the DM velocity distribution Allows for any DM annihilation process	Pythia 8 computes on the fly the energy spectra Allows for any DM annihilation process DM DM → n particles	Prompt photons Neutrinos Positrons Anti-protons (free choice of propagation parameters)	Fermi-LAT likelihood for dSPhs + ExpConstraint class

indirect

signav

Elux Sourc

flux earx,

Indirect detection screen output

```
**** Relic Density
OMEGA IS 0.000325869586293
INFO: Relic Density
                       = 3.26e-04
                                         ALLOWED
                       = 2.80e+01
INFO: x f
INFO: sigmav(xf)
                       = 2.81e-07
INFO: xsi
                       = 2.72e-03
***** Indirect detection [cm^3/s]:
INFO: <sigma v> method: madevent
INFO: DM particle halo velocity: 2e-05/c
                      Thermal = 1.67e-38 ALLOWED
                                                                                  Fermi ul = 1.16e-25
INFO: xdxdx zz
                                                      All DM = 2.26e-33 ALLOWED
INFO: xdxdx aa
                      Thermal = 1.25e-37 NO LIMIT
                                                      All DM = 1.69e-32 NO LIMIT
                                                                                 Fermi ul = -1.00e+00
               Thermal = 1.29e-35 ALLOWED
INFO: xdxdx ttx
                                                      All DM = 1.74e-30 ALLOWED
                                                                                  Fermi ul = 1.09e-25
INFO: xdxdx hh
                      Thermal = 6.03e-39 ALLOWED
                                                      All DM = 8.15e-34 ALLOWED
                                                                                  Fermi ul = 1.03e-25
                      Thermal = 1.28e-38 ALLOWED
INFO: xdxdx wpwm
                                                      All DM = 1.73e-33 ALLOWED
                                                                                  Fermi ul = 1.14e-25
INFO: Skipping zero cross section processes for: xrxr, xcxcx, y0y0
INFO: Total limits calculated with Fermi likelihood:
INFO: DM DM > all
                       Thermal = 1.30e-35 ALLOWED
                                                      All DM = 1.76e-30 ALLOWED
                                                                                  Fermi ul = 2.85e-25
INFO:
INFO: *** Fluxes at earth [particle/(cm^2 sr)]:
                        = 1.22e-14
INFO: gammas Flux
INFO: neutrinos e Flux = 8.92e-18
INFO: neutrinos mu Flux = 9.75e-18
INFO: neutrinos tau Flux =
                           8.78e-18
```

Indirect detection output files

Scan example: Reproduce relic contour

$$\mathcal{L} = \bar{\chi}\gamma_{\mu}(g_{\chi}^{V} + g_{\chi}^{A}\gamma_{5})\chi Z_{A}^{\mu} + \bar{q}\gamma_{\mu}(g_{q}^{V} + g_{q}^{A}\gamma_{5})qZ_{A}^{\mu}$$

Scan example: Reproduce relic contour

Load model:

MadDM>import model DMsimp_s_spin1

Define DM candidate:

MadDM>define darkmatter xd

Request for computation of relic density:

MadDM>generate relic density

Creating output folder and run:

MadDM>output PROC_DMsimp_scan
MadDM>launch

Example: Simplified dark matter model

```
/======= Description =========|====== values =======|===== other options ======\
 1. Compute the Relic Density
                                           relic = ON
                                                               OFF
 2. Compute direct(ional) detection
                                          direct = OFF
                                                               Please install module
 3. Compute indirect detection/flux
                                         indirect = OFF
                                                               Please install module
                                                               Please install module
  4. Run Multinest scan
                                        nestscan = OFF
You can also edit the various input card:
 * Enter the name/number to open the editor
 * Enter a path to a file to replace the card
 * Enter set NAME value to change any parameter to the requested value
 5. Edit the model parameters
                               [param]
   6. Edit the MadDM options
                               [maddm]
[60s to answer]
>5
  opens yourdir/MG5 aMC v2 6 7/PROC DMsimp scan/Cards/param card.dat
```

param_card.dat:

29 0.000000e+00 # gVh

```
Run a scan
## INFORMATION FOR DMINPUTS
Block dminputs
   1 0.000000e+00 # qVXc
                                   2 0.000000e+00 # qVXd
                                   ## INFORMATION FOR MASS
   3 1.000000e+00 # gAXd
                                   4 0.000000e-01 # gVd11
                                   Block mass
   5 0.000000e-01 # qVu11
                                      1 5.040000e-03 # MD
   6 0.000000e-01 # gVd22
                                      2 2.550000e-03 # MU
   7 0.000000e-01 # gVu22
                                      3 1.010000e-01 # MS
   8 0.000000e-01 # gVd33
                                      4 1.270000e+00 # MC
   9 0.000000e-01 # qVu33
                                      5 4.700000e+00 # MB
  10 0.000000e+00 # qVl11
                                      6 1.720000e+02 # MT
  11 0.000000e+00 # gVl22
                                     15 1.777000e+00 # MTA
  12 0.000000e+00 # gVl33
                                     23 9.118760e+01 # MZ
  13 2.500000e-01 # gad11
                                     25 1.250000e+02 # MH
  14 2.500000e-01 # gau11
                                    5000001 scan:range(50,2000,50)
  15 2.500000e-01 # gad22
                                    5000511 1.000000e+01 # MXr
  16 2.500000e-01 # gau22
                                    5000512 1.000000e+01 # MXc
  17 2.500000e-01 # gad33
                                                                 # MXd
                                    5000521 scan:range(50,700,25)
  18 2.500000e-01 # gau33
                                    999000006 7.000000e+01 # sdmm
  19 0.000000e+00 # gAl11
                                    999000008 7.000000e+01 # vdmm
  20 0.000000e+00 # gAl22
                                   ## Dependent parameters, given by model restrictions.
  21 0.000000e+00 # gAl33
  22 0.000000e+00 # gnu11
  23 0.000000e+00 # gnu22
                              Alternative way to change parameters:
  24 0.000000e+00 # gnu33
  25 0.000000e+00 # qVu31
  26 0.000000e+00 # gAu31
                              > set Mxd scan:range(50,700,25)
  27 0.000000e+00 # gVd31
                              > set MY1 scan:range(50,2000,50)
  28 0.000000e+00 # gAd31
```

Results of the scan

/yourdir/MG5_aMC_v2_6_7/PROC_DMsimp_scan/output/scan_run_01.txt:

[01] : run

[02] : mass#5000001
[03] : mass#5000521

[04] : Omegah^2

```
# [05] : x_f
# [06] : sigmav(xf)
# [07] : xsi
run_02_01 5.00e+01
                             3.75e-04
                                       2.60e+01
                                                7.62e-07
                                                           3.13e-03
                   5.00e+01
run_02_02 5.00e+01
                  7.50e+01 1.08e-04 2.80e+01
                                                 1.83e-06
                                                           8.99e-04
                                       2.80e+01
run_02_03 5.00e+01
                                                 2.58e-06 7.44e-04
                   1.00e+02 8.91e-05
                                                 3.55e-06
run_02_04 5.00e+01
                             6.92e-05 2.90e+01
                  1.25e+02
                                                           5.78e-04
run_02_05 5.00e+01
                             5.31e-05 2.90e+01
                                                 4.92e-06
                  1.50e+02
                                                           4.43e-04
                             1.27e-05 3.10e+01
                                                 1.50e-05
run_02_06 5.00e+01
                                                           1.06e-04
                  1.75e+02
                                                 2.54e-05
run_02_07 5.00e+01
                  2.00e+02
                             6.57e-06
                                      3.10e+01
                                                           5.48e-05
                                                           4.43e-05
run 02 08 5.00e+01
                  2.25e+02
                             5.31e-06 3.20e+01
                                                 3.11e-05
                                                           3.91e-05
                   2.50e+02
                             4.68e-06
                                       3.20e+01
                                                 3.58e-05
run 02 09 5.00e+01
run_02_10 5.00e+01
                   2.75e+02
                             4.28e-06
                                       3.20e+01
                                                 3.99e-05
                                                           3.57e-05
```

Results of the scan

Questions?

	'fast' mode	'precise' mode
	set fast	set precise
	ONLY for SM final states $(2 \rightarrow 2)$	ALL possible final states $(2 \rightarrow n)$
	OTVET for SIVI final states (2 × 2)	sigmav_method = reshuffling (default)
	sigmav_method = inclusive	or can be changed to
$\langle \sigma v \rangle$	8 2 2	sigmav_method = madevent
Indirect = sigmav		
	NO EVENTS generated	EVENTS generated (LHE file)
	output: $\langle \sigma v \rangle$ for each $2 \rightarrow 2$	$\langle \sigma v \rangle$ for ANY
	annihilation process (SM and BSM)	annihilation process
	indirect_flux_source_	
	method = PPPC4DMID_ew (default)	
Spectra at source	or can be changed into	indirect_flux_source_
<pre>Indirect = flux_source</pre>	indirect_flux_source_	method = pythia8 (default)
	method = PPPC4DMID	
	computes $\langle \sigma v \rangle$ with inclusive	computes $\langle \sigma v \rangle$ with reshuffling
	output: energy spectra	output: energy spectra
	coming ONLY from SM final states	coming from ANY final state
	indirect_flux_earth_	indirect_flux_earth_
	method = PPPC4DMID_ep (default)	method = dragon (default)
Flux at Earth		
Indirect = flux_earth	computes $\langle \sigma v \rangle$ with inclusive	computes $\langle \sigma v \rangle$ with reshuffling
	output: γ and ν_i using	output: γ and ν_i using
	PPPC4DMID tables at production (ew case)	Pythia 8 for the prompt energy spectra
	e^+ flux at Earth	e^+ and \bar{p} fluxes at Earth
	using PPPC4DMID tables	using DRAGON
	or can be changed into	using Ditaduly
	e^+ and \bar{p} fluxes at Earth	
	using DRAGON	
Evnerimental constraints	ExpConstraints class	EvnCongtraintg class
Experimental constraints	_	ExpConstraints class + full Fermi I AT likelihood for dSphs
	+ full Fermi-LAT likelihood for dSphs ONLY for SM final states	+ full Fermi-LAT likelihood for dSphs
	ONLI 101 SWI IIII States	