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Exercises 3.2 and 3.3 are based on previous tutorials by Julien Lesgourgues & Thomas Tram

1 class overview

class is designed to simulate the evolution of linear perturbations in the universe and to compute
the cosmological observables for a given input model. class was written by Julien Lesgourgues
& Thomas Tram, and first released in 2011.

class aims at being

• General: it features numerous models and many different cosmological outputs.

• Modern: class is written in C with a modular structure. It comes with a wrapper for
both python and C++.

• User-friendly: it is well documented (both inside the code and with the comprehensive
online documentation). The code is easy to follow and equations are not repeated, making
it straightforward to modify. class also comes with several example jupyter notebooks.

• Accurate and fast: agrees with camb (similar, older code written in Fortran) at the 10−4

(0.01%) level for CMB observables, and runs in a couple of seconds for most models.

• Up-to-date: continuously maintained and expanded with more models and features, while
maintaining compatibility with older versions.

More information about class, including previous courses and tutorials can be found on the
class home page. class can be used freely, provided that in your publications you cite at least
the class II: Approximation schemes paper.

2 Getting class

If you are in a rush or are already familiar with this type of code, you can go for the short
installation instructions. If you have never done it before, or if you want to know what every
step is doing, go for the detailed version.

2.1 Short version (tl:dr)

On most Linux machines (or a Mac with gcc), downloading, compiling, and running class can
be done with four simple commands:

git clone https://github.com/lesgourg/class_public.git
cd class_public
make -j
./class explanatory.ini
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2.2 Very detailed version

Requirements

Installation should be straightforward on Linux, and slightly more tricky (but still doable) on
Mac. We suggest to not even try on Windows (i.e. you are on your own if you try).

In order to compile the C code, it is recommended to use gcc. Other C compilers like icc can
also be used, but clang (native Mac C compiler) can prove problematic. To compile the python
wrapper you can use either python 2.7 or 3, and you will need the modules numpy and cython.

Downloading class

class can be downloaded in two different ways: via git (recommended) or the traditional way
from a tar file. In both cases, the installation instructions are the same.

To download via git (always gets you the newest version) type:
git clone https://github.com/lesgourg/class_public.git

To download the tar:

• The latest tar file can always be found on the class home page. The current (October 30,
2020) version is class_public-2.9.4.tar.gz.

• Once downloaded, extract the files either manually or via command line with
tar -xzvf class_public-2.9.4.tar.gz

Installing class

Once the code is downloaded, in a terminal navigate to your new class folder. Now you can
choose to compile only the main C code, or also the python wrapper (required for doing the
class exercises in a python notebook and for using it within MontePython).

To compile the C code type:
make -j class

To compile the C code and the python wrapper type:
make -j

To test if the C code was installed successfully type:
./class explanatory.ini

This will run class with the default input file. You should see some output on the screen, and
no error messages. To test if the python wrapper installation also worked, you should be able to
do the following with no errors:

python
> > > from classy import Class

If something went wrong with either of the installations, check out the detailed compilation issues
page on the main class wiki.
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3 class exercises

With the python wrapper class can also be used from within jupyter notebooks, which allows
for quicker visualisation of the output, and is ideal if you are used to a cell-like structure as in
Mathematica. This can be installed via pip or anaconda, and more detailed instructions can be
found on the jupyter site. Note that this is not a requirement for using class, you can also do
the exercises by running class from the command line and using your favourite plotting tool to
visualise the output.

3.1 Different class outputs

All possible input parameters and details on the syntax for class are explained in the example
input file, explanatory.ini. For basic usage of the code, this provides a full documentation of what
you need. This file is intended as a reference file: it is recommended that you do not modify this
file, but rather you can either copy it and modify your copy, or create a new .ini file with only
the parameters you need.

1. Create a copy of explanatory.ini, called myfirsttest.ini. Open your file with your favourite
text editor and see if you can locate the main ΛCDM parameters.

2. Run your file once without any modifications with ./class myfirsttest.ini. Look into
the output folder and see what files were created: you should see the C`s, the lensed C`s,
a list of used parameters stored in a .ini file that can be used for future runs, and a list of
unused parameters (these are declared in your input file, but not used in the run).

3. Now we will change the output files. Open your .ini file and locate the output options. By
default, class computes the temperature (tCl), polarisation (pCl), and lensing (lCl) C`s.
Add the matter power spectrum (mPk) to the list of outputs.

4. Run your file with ./class myfirsttest.ini, and check in the output folder that you
have a new file, containing the matter power spectrum.

5. Open up your .ini file again, and locate the write background and write thermodynamics
flags. Set them both to yes, and rerun your file. You should now have two additional files,
containing a table of background and thermodynamic quantities as a function of redshift.
Check your output folder to find the expected files.

6. Finally, locate the ten verbose flags (at the end of the .ini file). These control how talkative
the different modules of class are. Try increasing the verbose flags, and rerun your .ini
file. You should see much more output on your screen.

7. Optional : use your favourite plotting utility to plot the temperature angular power spec-
trum. For a quick plot, you can use the in-built class plotting utility (CPU), but note that
this is a very bare-bones plotting tool. To plot the temperature angular power spectrum,
you can use:

python CPU.py output/myfirsttest01_cl.dat -y TT

To find the full usage of CPU, type the following:

python CPU.py - -help
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Figure 1: Planck 2018 results.

3.2 Playing with the Planck best-fit model

This exercise does not require any plotting or manipulation of input/output data, so it does not
require a python script or notebook. You can simply run this in terminal, the same as you did
in the previous exercise.

Figure 1 shows a table with the constraints on the standard cosmological parameters from the
Planck 2018 Cosmological Parameter paper. The Planck baseline constraints (including BAO
data) are in the last column, so we will use that as our reference, but you could do this exercise
with any of the columns.

1. Write a short input file with the appropriate values of ωb, ωcdm (Ωch
2 in the table), H0 or

h, τreio (τ in the table). Run only the background and thermodynamics module for this
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model (to do so, just leave the output field blank)1. To get some standard output, set
input_verbose, background_verbose, and thermodynamics_verbose to one. To be sure
that you do not have syntax errors in your input file, setting write warnings = yes is
advisable. Look at the different lines of the standard output. Do you reproduce accurately
the age of the Universe in Gyr given in the table (here, accurately means e.g. up to better
than 0.1σ) ?

2. Part of the difference comes from different settings for other parameters. To work with
exactly the same parameters as in the Planck paper, you need to add one massive neutrino
species with m = 0.06 eV. Thus you need to add one non-cold-dark-matter (ncdm) species,
and to reduce the number of ultra-relativistic (ur) relics to two (plus small corrections
coming from the details of neutrino decoupling models, which would be 0.046 for 3 massless
neutrinos and 0.03351 for two massless neutrinos). Add the following parameters to your
.ini file:

N_ur = 2.03351

N_ncdm = 1

m_ncdm = 0.06

Run again with these additional parameters. Do you get closer to the age indicated in the
table?

Check also that you get the same or nearly the same value for the redshift and comoving
sound horizon at recombination (z∗, r∗ in the table), redshift and comoving sound horizon
at baryon drag (zdrag, rdrag in the table), and reionization redshift (zre in the table).

3. Check that if instead of the value of H0 from the seventh row, you pass 100*theta_s
with the value indicated in the Planck table (in the 3rd row), you get a different value
of H0 from class. The reason is that the table gives θMC, an analytic approximation
to the actual ratio θs = ddec

s /ddecA (sound horizon at decoupling over angular diameter
distance to decoupling) computed internally by CosmoMC. Instead, class computes the
true θs = ddec

s /ddec
A with a numerical integration. To know the true θs, go back to the

previous run in which you specified h or H0 in input. Use the standard output of the code
to get the correct 100 θs. Now pass this value and check that you get the right h.

4. Note: In addition to the standard .ini file, class can take a .pre file, which is usually where
you declare precision parameters if you want to push the code to even higher precision (often
at the expense of runtime). These parameters could also be declared in your .ini file, but
it is cleaner to separate them. You should see in your class folder an example cl_ref.pre,
which you can use as a short guideline. All of the precision parameters, as well as their
default setting, can be found in include/precisions.h. To test running with a precision
file, use ./class mytest.ini cl_ref.pre. You should notice the output background and
thermodynamics quantities only change at the fifth or sixth digit.

1In this exercise, we care only about the background and thermodynamics evolution, so it is not necessary to
pass the same values of ln(1010As) (or As) and ns as in the paper. So they can be left unspecified. If we wanted
to reproduce the same C`s or P (k) as for the Planck best-fit model, we would need to pass the correct ln(1010As)
(or As) and ns, the correct pivot scale k_pivot = 0.05 , and to specify some fields for output = ...
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3.3 Impact of baryons on the matter power spectrum (More Advanced)

The objective of this exercise is to run class multiple times, changing the value of one parameter
to see how this impacts the matter power spectrum. This exercise is much easier with a python
notebook or script calling class in a loop. However, you can also do this exercise by running
class in a terminal with different .ini files, and then plotting the corresponding output files with
your favourite plotting tool.

Plot the ratio of matter power spectrum for ∼ 5 values of ωb (log-lin) ranging from ∼ 0 to 0.1,
and check the effect of baryons: it should be a step-like suppression with superimposed oscilla-
tions (corresponding to the BAOs).

Hint : Start from varying_neff.ipynb (in the notebooks folder) and adapt it to your needs.
Ideally you would take a reference model with ωb = 0, but no Boltzmann code will allow you to
do that: a certain amount of baryons is needed in order to have a tightly-coupled photon-baryon
fluid at the time of initial conditions. Therefore, it is recommend to take a very small value
like ωb = 10−3 as the reference. Since for the purpose of the plot you will use very unrealistic
values of ωb, the code cannot use its feature of “automatically determining the primordial Helium
fraction YHe using an interpolation table encoding the results of BBN codes”, so it is better to
fix the primordial Helium fraction manually (this can be done with YHe = 0.25 in your .ini file).

Your final figure should look similar to Figure 2.
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Figure 2: Effect of baryons on the matter power spectrum.

Note: When you modify the ωb, you increase the overall matter content of the universe (ωM).
In order to maintain the budget equation, class will automatically adjust the amount of Dark
Energy (ωΛ). If instead you want to maintain the amount of Dark Energy fixed, but change
the amount of Dark Matter to adjust the budget equation, you can add a line in your script to
compute ωcdm such that ωb + ωcdm = constant.
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