

Cable model meeting

Ruben Keijzer

18-09-2020

Content

• THEA model – V-I measurements

- MQXF voltage profile
- Influence of boundary conditions
- Influence of inter-strand contact resistance
- List of anomalous features
- THEA model quench voltage
- Proposal for experiment

V-I measurement results

- Anomalous voltage signals on several segments at the 14 kA plateau:
 - Negative decaying voltage over the *straight* segment (3127-3118)
 - Positive decaying voltage over the *head* segment (3126-3127)

THEA model

Sub-scale model consisting of 12 strands

- 120 m long cable
- 5 degraded strands: 20 % remaining SC area, n-value = 20, L_{def} = 1 mm

• Assumptions:

- Homogeneous magnetic field over the entire cable
- Constant temperature: 1.9 K
- Voltage taps measure one strand only
- Inter-strand contact resistances:
 - $R_a = 5 \ \mu\Omega$
 - $R_c = 200 \ \mu\Omega$

10	11	12	1	2	3	4
	ρ	ρ	ρ	ρ	ρ	
	\cup	\cup	\cup	\cup	\cup	•••••

MQXF – current distribution

- Simulation of V-I measurement, straight ramp to 14 kA, 20 A/s
- Current profile of degraded vs intact strands around defect
- Most of the current is taken up by <u>adjacent</u> strand
- As time progresses the profile expands \rightarrow voltage decays

MQXF – Voltage profile

- Voltage profile of degraded vs intact strands
- Negative voltage is possible when measuring in front or after the defect.
- Negative voltage <u>over</u> the defect is <u>not</u> possible with any combination of voltage taps

intact

V.

intact

 V_3

Possible defect

locations

degraded

 V_2

Conclusions – THEA model MQXF

- Decaying voltage signals can be explained by an inhomogeneous defect
- <u>Negative</u> voltage signal is possible when measuring next to the defect
- <u>Negative</u> voltage signals are <u>not</u> possible when measuring <u>over</u> the defect

Boundary conditions

- Influence of boundary conditions
- Model with 12 strands, length: 120 m
- Two simulations:
 - Imposed voltage boundary conditions —
 - Imposed current boundary conditions ---
- The results for both cases are an exact match
 - BC's are far enough away from defect to not make a difference

Boundary conditions

- Voltage profile also matches exactly
- Conclusion:
 - Boundary conditions at the joint do not play a role for sufficiently long models

Influence of R_a

- Current profile after 2000 s for a cable with R_a = 5 $\mu\Omega$ and R_a = 0.5 $\mu\Omega$
- Reduced length scale of current redistribution for lower R_a

Influence of R_a

 Voltage profile reduced in both amplitude and length

9/18/2020

Results – 11 T dipole

- Sub-scale cable model of 16 strands
- 5 fully broken strands, $R_a = 5 \mu \Omega$
- Continuous ramp to 10.5 kA → positive decaying voltage
- Ramp down to 6 kA → negative decaying voltage

Overview of anomalous features in V-I measurements

- THEA model with a length of >100 m
- Inhomogeneous defect of 1 mm at the center
 - A subset of strands is broken or degraded

Magnet	Anomalous feature	THEA model
11 T dipole/ MQXF	Voltage decay	OK
11 T dipole /MQXF	Time constant: ~ 10 ² seconds	OK
11 T dipole	Negative voltage after ramp down (full coil)	OK
MQXF	Negative voltage after ramp up (internal segment)	OK

Uncertainties of model

Results depend on uncertain parameters

- Inter-strand contact resistance
- R_a is not precisely known and may vary longitudinally
- R_c varies transversely since the core has a reduced width
- No transverse or longitudinal variation in the magnetic field
- No temperature dependent effects

Early quench development – model proposal

- Some quenches in the *presumably* damaged coils showed interesting features during the early stages of the quench
- Variations in slope of coil voltage after quench
- Possibly the result of inhomogeneous current distribution at quench start
- Can this behavior be reproduced in a <u>short</u>
 <u>model</u> simulating only the first few milliseconds of the quench?

SMC magnets – proposal for experiments

- Leftover SMC magnets may be used to conduct experiments
 - Double racetrack coils of ~60 meters length
 - 18/40 strand Rutherford cables of different types (cored vs. non-cored)
- Introduce a local defect \rightarrow break one or multiple strands
- Implement voltage taps on all strands at different locations

SMC magnet – voltage taps

- Voltage taps can be implemented with measurement leads on a trace
- Voltage taps every other strand
- Longitudinal vs. transverse resolution
- Exploit symmetry of voltage profile

SMC magnets – proposal for experiments

Model validation

- Match voltage levels on taps with THEA model
- Study quench behaviour/location
 - Quench behaviour on strand level

Ramp rate studies

- Quench location vs. defect location
- Inverse ramp rate dependency
- Very fast ramps possible

