QCD for inclusive forward charm production at the LHC

Pavel Nadolsky

Southern Methodist University, Dallas, TX

Based on studies with CTEQ-TEA (Tung et al.) working group

1. PDFs at small momentum fractions *x* T.-J. Hou et al.,arXiv:1912.10053

2. Intrinsic charm production at large *x* T.-J. Hou et al., arXiv:1707.00657

11/10/2020

A Forward Physics Facility at the LHC opens access to new momentum fractions x Experimental data in CT18 PDF analysis Gluon PDF with Neutrinos from Charm Decay 104 PRELIMINARY arXiv:1912.10053 FixedTarget Inclusive jet LHC F. Kling Tevatron HERA LHCv_e with $7 < \eta_v < 8$ 1000 $LHCv_e$ with $8 < \eta_v < 9$ 10³ LHCv_e with $9 < \eta_v$ LHC: tt LHC: jets [10² 0 [GeV] 100 LHC: W/Z prod. $t\bar{t}, Z p_T$ LHC: DY ERADIS 10^{1} 10 LHC: B HERA 10^{0} 10-5 10-3 10-2 10-7 10-6 10^{-4} 0^{-1} 10⁰ Fixed-target DIS & D 10-5 0.010 х 10-4 0.001 0.100

 $pp \rightarrow (c \rightarrow D \rightarrow v)X$ production at FASERv $\langle x_1 \rangle \sim 10^{-7}$ and $\langle x_2 \rangle \sim 0.02$ at $\langle Q \rangle \sim 2$ GeV

1. Little is known about QCD for charm production at such $\langle x \rangle \Rightarrow$ this talk

2. FASER ν detects neutrinos via charged-current DIS on nuclear targets \Rightarrow M. Garzelli

1. DGLAP: Q > 1 - 2 GeV, $x > 10^{-4} - 10^{-5}$

Fast growth of PDFs at $x \rightarrow 0$ and fixed Q

• At $x = 10^{-7}$ and Q = 1 - 2 GeV, gluon and other PDFs have large uncertainty and large Qdependence

- Fixed-order DGLAP predictions do not converge well here
- The growth of parton densities must slow down at very small *x* because of unitarity of the scattering matrix

2. BFKL: Q > 1 - 2 GeV, $? < x < 10^{-4}$

 k_T dependent factorization resums towers of $\alpha_s^k \log^p(1/x)$ when α_s is small

Some PDF fits implement the NLLx-NNLO approximation to the full BFKL solution in the Altarelli-Ball-Forte representation

3a. Saturation: $Q^2 \leq Q_0^2 x^{-0.3}$

At such Q^2 , the parton density is very high. Large parton recombination effects slow down the growth of PDFs with Q^2

Color Glass Condensate: the relevant degrees of freedom in a hadron are classical QCD fields

The JIMWLK equation describes scattering of QCD dipoles on the CGC matter

P. Nadolsky, FPF kick-off workshop

3b.: Saturation: $Q^2 \sim Q_0^2 x^{-0.3}$

The Balitsky-Kovchegov (BK) equation realizes the JIMWLK equation when long-distance parton correlations are not large

The BK equation predicts geometric scaling. Geometric scaling is qualitatively observed in HERA DIS data. It is based on the fits that are not very precise.

Which formalism(s) are relevant for FASERv?

QCD dynamics vs. Q and x

$\gamma^* p$ total cross sections ZEUS, hep-ex/9510009

QCD dynamics vs. Q and x

$\gamma^* p$ total cross sections ZEUS, hep-ex/9510009

Red lines "fit" $\sigma_{tot}^{\gamma^* p} \sim \sigma_{reduced}$ for a fixed Q

The slope of $\sigma_{tot}^{\gamma^* p} \sim \sigma_{red}$ vs. 1/x changes as a function of x and Q, predicting rapid growth of PDFs at $x \to 0$

QCD dynamics vs. Q and x

$\gamma^* p$ total cross sections ZEUS, hep-ex/9510009

For points below the blue line, expectations are consistent with DGLAP collinear factorization at NNLO

Above, we see deviations

The boundary has not been located precisely.

We can test DGLAP factorization with combined HERAI+II data!

The combined HERA1+2 data are included in HERA2.0, CT14H2, MMHT, and NNPDF3.1 analyses

 $\chi^2/d.o.f. \sim 1.2$ for HERA1+2 tends to be elevated across all analyses, compared to $\chi^2/d.o.f. < 1.1$ for combined HERA1 data

- ⇒ This tension may arise from several sources
- Twist-4 correction to $F_L(x, Q)$
- Small-*x*/saturation
- Experimental systematics

²⁵ The impact on global PDFs is mild, changes in PDFs do not exceed uncertainties P. Nadolsky, FPF kick-off workshop

Modifications to the HERAPDF2.0 fit called HHT By I.Abt, A.M.Cooper-Sarkar, B.Foster, V.Myronenko, K.Wichmann, M.Wing

PDFs – and hence high Q² physics - not changed

Alternative formalisms for low-x DIS data

- NNPDF [arXiv:1710.05935] and xFitter [1802.0064] : BFKL to resum the small-x logarithms
- CT18 [arXiv:1912.10053]:
 an x-dependent DIS scale, motivated by the saturation models

PDF ensemble	Factorization scale in DIS	ATLAS 7 Z/W data included?	CDHSW $F_2^{p,d}$ data included?	Pole charm mass, GeV
CT18	$\mu_{F,DIS}^2 = \mathbf{Q}^2$	No	Yes	1.3
CT18X	$\mu_{F,DIS}^2 = 0.8^2 \left(Q^2 + \frac{0.3 \ GeV^2}{x^{0.3}} \right)$	No	Yes	1.3
CT18A	$\mu_{F,DIS}^2 = \mathbf{Q}^2$	Yes	Yes	1.3
CT18Z	$\mu_{F,DIS}^2 = 0.8^2 \left(Q^2 + \frac{0.3 \ GeV^2}{x^{0.3}} \right)$	Yes	No	1.4

A new regime of QCD: low x, BFKL resummation, saturation

PDF fits based on fixed order (NNLO) and small-x resumed (NNLO+NLLx) theory

NNPDF3.1sx, HERA inclusive structure functions

Resummation stabilizes fixed-order QCD at $x < 10^{-3}$; inclusive cross sections are not ideal for discrimination between DGLAP and BKFL scenarios

CT18X and Z: a special factorization scale in DIS

11/10/2020

P. Nadolsky, FPF kick-off workshop

CT18X and Z: a special factorization scale in DIS

Right: when the χ^2 weight for the **inclusive** HERA I+II DIS is increased to wt = 10 to suppress pulls from the other experiments, χ^2_{CT18Z}/N_{pt} for HERA I+II DIS **and** HERA charm production decreases to about the same levels as in HERA-only NNLO+NLLx fits by other groups.

 NNLO with an x-dependent scale is statistically indistinguishable from BFKL resummation in the CT18 x-Q region (Q > 2 GeV)

CT18X NNLO compared to NLLx-NNLO (CT18-sx) PDFs

Structure function $F_2(x, Q^2)$

> CT utilizes the ACOT scheme, which agrees with the NNPDF's FONLL scheme.

- > The CT18 ACOT small x (sx) resummed F2 is obtained with the K-factor approach $CT18 ACOT sx = CT18 ACOT \frac{FONLL sx}{FONLL}$
- > For F2, the CT18X is indistinguishable with the small x resummed structure function down to $x \sim 10^{-5}$. It only takes off below this x value.
- > At higher Q~10 GeV, both small x resummation and the CT18X prescription (x-dependent scale choice) give the same prediction as the standard DGLAP one (CT18).

Structure function $F_L(x, Q^2)$

> At low Q and $x < 10^{-5}$, CT18X reduces F_L , while the smallx resummation enhances it.

- > At high Q, both enhance F_L , while the CT18X prescription is sizably smaller.
- It would be very interesting to see which behavior is preferred by data.

"Intrinsic charm" (IC) production at large momentum fractions

"Intrinsic charm" (IC) production at large momentum fractions

- Better understood in DIS
- Arises from higher-twist terms with a potentially process-dependent hard component (different in $ep \rightarrow ecX$ and $pp \rightarrow cX$)
- May strongly enhance the neutrino flux at $\mathsf{FASER}\nu$
- LHCb measurements of charm production may help to constrain!

A twist-4 contribution in HERA DIS charm production $(\subset$ "intrinsic charm")

11/10/2020 twist-2 α_s^2 term

P. Nadolsky, FPF kick-off workshop

26

CT14 IC study: answers to important questions T.-J. Hou et al., arXiv:<u>1707.00657</u>

What are phenomenological constraints on the "intrinsic charm" from the global QCD data?

 \Rightarrow The CT14 charm PDFs allow a "nonperturbative" component carrying a total momentum fraction of 1 - 2% in DIS at $Q \approx m_c$.

Can we estimate its impact on the LHC predictions?

Yes, based on the <u>simplest</u> approximation of the "nonperturbative" charm contribution. In most cases, the estimated impact is less than the net CT14 PDF uncertainty.

Note: "intrinsic charm" ≠ "fitted charm"

P. Nadolsky, FPF kick-off workshop

PDF fits may include a ``fitted charm" PDF

``Fitted charm'' = ``higher-twist charm'' + other (possibly not universal) higher $O(\alpha_s)$ / higher power terms

QCD factorization theorem for DIS structure function F(x, Q) [Collins, 1998]:

All
$$\alpha_s$$
 orders: $F(x,Q) = \sum_{a=0}^{N_f} \int_x^1 \frac{d\xi}{\xi} C_a\left(\frac{x}{\xi}, \frac{Q}{\mu}, \frac{m_c}{\mu}; \alpha(\mu)\right) f_{a/p}(\xi, \mu) + \mathcal{O}(\Lambda^2/m_c^2, \Lambda^2/Q^2).$

The PDF fits implement this formula up to (N)NLO ($N_{ord} = 1$ or 2):

$$\mathsf{PDF fits:} \qquad F(x,Q) = \sum_{a=0}^{N_f} \int_x^1 \frac{d\xi}{\xi} \, \mathcal{C}_a^{(N_{ord})}\left(\frac{x}{\xi}, \frac{Q}{\mu}, \frac{m_c}{\mu}; \alpha(\mu)\right) \, f_{a/p}^{(N_{ord})}(\xi, \mu).$$

The perturbative charm PDF component cancels at $Q \approx m_c$ up to a higher order The 'fitted charm component' may approximate for missing terms of orders α_s^p with $p > N_{ord}$, or Λ^2/m_c^2 , or Λ^2/Q^2

Allowed $c + \bar{c}$ momentum fractions

Sources of differences	CT14 IC	NNPDF3.x
α_s order	NNLO only	NLO, NNLO
Settings	90% c.l., $Q_0 = m_c^{pole} = 1.3 \text{ GeV}$	68% c.l., $Q_0 = m_c^{pole} = 1.51$ GeV
LHC 8 TeV W, Z	Under validation; mild tension with HERA DIS data	Included; strong effect despite a smallish data sample
1983 EMC <i>F</i> _{2c} data included?	Only as a cross check (unknown syst. effects in EMC data)	Optional, strong effect on the PDF error

Synergy between future ep/eA colliders and FPF

An *ep* collider operating concurrently with the HL-LHC and LHC FPF can contribute critical **independent** measurements of PDF that are free of the LHC systematic effects and igh-mass BSM contributions

An **Electron-Ion Collider** can replace most of fixed-target and nuclear-target measurements constraining proton PDFs at large x. It will systematically study PDFs for heavy nuclei. https://indico.fnal.gov/event/44510/

The Large Hadron-Electron Collider will supersede the HERA DIS measurements and extend the kinematic reach of DIS to very small x and large Q

Figure 1.20. Charm contribution to the reduced NC e^-p DIS cross section at $\sqrt{s} = 45$ and 105 GeV. For each IC model, curves for charm momentum fractions of 1% and 3.5% are shown. For comparison we display the number of events dN_e/dx for $10 \,\text{fb}^{-1}$, assuming perfect charm tagging efficiency. [Guzzi, Nadolsky, Olness, in arXiv:1108.1713;

T. Hobbs, arXiv:1707.06711; Arratia et al., arXiv:2006.12520]

EIC, CC charm production

A reverse process of neutrino detection at FASER ν EIC: $\ell = e$, $\ell' = \nu$; FASER ν : $\ell = \nu$, $\ell' = e$ Can be studied with multiple nuclear beams *N*

Flavor Tagging Efficiency

~ 6000 tagged charm jet events with $100 f b^{-1}$

Conclusions

FASER ν will test QCD in novel kinematic regimes where little or no experimental measurements exist.

We don't know which QCD formalism(s) are appropriate in these regimes

We can test transition to small-x factorization, higher-twist enhancements in charm production, charged-current DIS on heavy nuclei

FASER ν will be most successful as a part of a larger physics program that includes efforts at LHCb, the EIC, and possibly LHeC.

Thank you for your attention!

Backup

H1 and ZEUS

