# High-energy muons at the Forward Physics Facility

#### Sebastian Trojanowski

(strojanowski@camk.edu.pl)

AstroCeNT, Nicolaus Copernicus Astronomical Center Polish Academy of Sciences

Forward Physics Facility – Kickoff Meeting November 9, 2020

**ASTROCENT** 

In collaboration with F. Kling











## Far-forward muons at the LHC



- Production:
- at the pp interaction point (IP) and further downstream, e.g. meson decays (charged pions...),
- these muons are often deflected away by strong LHC magnets
- In the TA(X)N neutral particle absorber, 130-140m away from the IP,
- e.g., in photon dimuon pair-production,  $yN \rightarrow \mu\mu N$
- Beam-gas collisions close to the Forward Physics Facility (FPF)
- typically soft products and with different directionality





## Impact of the LHC optics

- Muons are deflected by the LHC magnets also after the TA(X)N
- About 2 x 10<sup>9</sup> muons expected during Run 3 in FASERv (25cm x 25cm)
- For R=1m transverse size and entire HL-LHC this would grow up to ~10^12 muons
- Could grow even 1-2 orders of magnitude more for larger transverse size
- Some muons can be deflected away by the magnet in front of the FPF (would be challenging for TeV μs)



# High-energy forward muon physics program

- ... is yet to be defined
- Some possibilities include:
  - **tri-muon signatures** to search for new physics and perform SM measurements (the rest of this talk)
  - muon beam-dump in front of the FPF to probe BSM models with the parent muon deflected away
  - depending on the dominant muon production mechanisms, lessons could be learned about the forward muon production in *pp* collisions (relevant for cosmic-ray studies)
- Definitely open for more ideas (feel encouraged to email us!)

## Tri-muon signature



#### Main SM processes:

- $\mu N \rightarrow \mu \gamma N$  (photon bremsstrahlung), followed by a di-muon pair production,  $\gamma N \rightarrow \mu \mu N$
- direct di-muon production, μN → μμμΝ

#### Example of a BSM process:

-  $\mu N \rightarrow \mu X N$  (brem of LLP X), followed by a decay,  $X \rightarrow \mu \mu$ 



Phys.Rev.D 20 (1979) 630, V.D. Barger, W.-Y. Keung, R.J.N. Phillips

### SM vs BSM trimuons

#### SM backgrounds for the BSM search:

- Prompt  $\mu \to 3\mu$  process This is mostly due to a dimuon pair production in the nuclear Coulomb field.<sup>1</sup>
- Displaced di-muon pair production from bremmed photon,  $\mu \to \mu(\gamma \to \mu\mu)$ .

#### BSM signal ( $\mu N \rightarrow \mu X N, X \rightarrow \mu \mu$ ) favors:

- Catastrophic energy loss of the incident muon  $(m_{\chi}>2m_{\mu})$  Identified based on the "opposite-charge" muon energy
- Small displacement, but within the emulsion detector capabilities:
- direct  $\mu N \rightarrow \mu \mu \mu N$  BG is prompt
- BG from photon-induced muon pair prod.  $\mu N \to \mu \gamma N$ ,  $\gamma N \to \mu \mu N$  is spread over the radiation length ~0.35cm in tungsten
- other handles e.g. kink angle

#### Results for a BSM muon-philic scalar



Schematic plot for large energy transfer >75%



## Some experimental issues

(to be remembered also when studying different ideas)

• (displaced) vertex reconstruction resolution will depend on the kink angle of the incident muon



• **trigering** based on tri-muon signal in the spectrometer Backward matching to emulsion – event pile-up needs to be overcome

In emulsion: 6x10^5 tracks/cm² (Run 3)

If the tracker resolution is  $\sim$ tens of  $\mu$ m then a few tracks per pixel are present in emulsion resulting in  $\sim$ few tens of combinations to check when searching for the vertex (managable)



## Tri-muon signature prospects

Muon-philic BSM scalar



#### SM measurement

of tri-muon production

CERN RD3 collaboration, 150GeV muons in iron



PDG, Muon stopping power

- $\bullet$  Muon energy loss: Kelner etal (P&S theory) results favored, but there are relatively large error bars at large  $\nu$
- Possibility to measure this for trimuons and to disentangle prompt vs displaced such signal
- also, measurements at TeV energies

## Concluding remarks

- Lots of muons produced in the far-forward region of the LHC
- They typically constitute BG for other searches, and can be used to calibrate the detectors but...
- ... they can also offer opportunity to initiate the entire new physics program
- We have discussed issues related to BSM and SM searches for the tri-muon signature
- Other ideas awaiting to be discovered! (happy to discuss now and by email)

### THANK YOU!!!