#### Neutral Current Neutrino Interactions at $\mathrm{FASER}\nu$

Roshan Mammen Abraham<sup>1</sup>

Department of Physics, Oklahoma State University

#### With Ahmed Ismail and Felix Kling

Forward Physics Facility Kickoff Meeting November 9, 2020





<sup>1</sup>rmammen@okstate.edu

Roshan Mammen Abraham

NC  $\nu$  interaction at FASER $\nu$ 

FPF-2020 1/15

 $\nabla \circ \circ$ 

# Neutral Current Cross-Section at $\mathrm{FASER}\nu$

- FASER $\nu$  will give us a unique opportunity to measure  $\nu$  cross-section in the  $\sim [100 \text{GeV} \text{few TeV}]$  range. Charged Current (CC) cross-sections were studied earlier.<sup>2</sup>
- Here we present an analysis strategy to identify and reconstruct Neutral Current (NC) interactions and hence constrain neutral current  $\nu$  cross-sections.
- $\nu$  NC studies face two main obstacles at FASER $\nu$  :
  - The missing energy in the final state (carried away by the  $\nu$ ) makes event energy reconstruction very difficult. This is a problem shared by all  $\nu$  NC studies.
  - $\bullet\,$  The main background for NC events at FASER  $\nu$  are

- CC events (*one person's treasure is another's background*). This is a less severe problem.

- Neutral Hadrons (NH), mainly induced by  $\mu$ 's.

<sup>2</sup>arXiv:1908.02310

SQA

< ロト < 同ト < 三ト < 三ト

#### CC:



**NH:** Apart from the  $\nu$ 's we are interested in only,  $\mu$ 's can travel all the way through rock to the FASER $\nu$  detector. The  $\mu$ 's interact with the rock in front of the detector and within the detector producing NHs. These  $\mu$  induced NHs are our most dominant background. NH interactions look very similar to our signal events. NH= $n, \overline{n}, \Lambda, \overline{\Lambda}, K_{L,S}, \pi$ 

SQA

# Event Generation and NN training

- Event Generation: We use Pythia to simulate  $\nu$ -W and NH-W collision. Other generators were compared with Pythia and were in agreement.
- Event Selection: We select events with  $\geq 5$  charged tracks, each charged track has energy  $\geq 1$  GeV, and  $\theta < \pi/4$ .
- Detector Simulation:
  - Track momentum and energy smearing.
  - Identifies each visible track as electron, photon or a normal track.
  - Determines if the track interacts within the detector.
- *NN training:* We use 2 NN's:
  - Classifier N/W: Distinguishes signal (NC) and background(NH) events.

- Regression N/W: Estimates the incoming particle energy. Only on identified signal events.

SQA

- 4 目 ト 4 目 ト

We use a total of 10 observables to characterize an event.  $\Delta \phi_{MET}$  = The azimuthal angle between the reconstructed missing transverse momentum and the nearest track.



NC  $\nu$  interaction at FASER $\nu$ 

 $\mathcal{A} \mathcal{A} \mathcal{A}$ 

э.

# Neural Network Results

The trained n/w's predict on a separate data set of signal and background events. First the classifier network classifies events into signal and background. Only the events classified as signal are passed into the regression n/w for energy estimation.



Figure: Results of the (left) classifier and (right) regression n/w.

Roshan Mammen Abraham

< □ ▶

FPF-2020 6 / 15

SAR

# Cross-Section Results

O/p of the NN's gives us the number of reconstructed events in each energy bin. This gives us size of statistical uncertainty on  $\nu$  NC interaction cross-section. The other source of uncertainty is the one on incoming flux.



Other uncertainties: NH flux, simulation.

Roshan Mammen Abraham

FPF-2020 '

クへで 7 / 15

# Future Work - Constraining NSI (an example)





Figure: Comparison of bounds on NSI couplings from CHARM(400GeV)(orange) and FASER $\nu$  (grey) for (left:) up quark and (right:) down quark in the Vector-Axial vector coupling plane. Vertical lines are bounds from oscillations and COHERENT that constrain only vector NSI.

Roshan Mammen Abraham

NC  $\nu$  interaction at FASER $\nu$ 

FPF-2020

8/15

- FASER $\nu$  can study CC and NC events at unprobed energies.
- We show here a strategy to overcome the usual difficulties with NC studies using machine learning.
- Both event identification and energy reconstruction were done to constrain  $\nu$  NC cross-section.
- This sensitivity to NC interactions can be used to do various physics, eg: constraining NSI, light mediators etc.

 $\mathcal{A} \mathcal{A} \mathcal{A}$ 

- $n_{ch} \sim \log E_{\rm had}$
- $n_{\gamma} \sim n_{\pi^0} \sim \log E_{\rm had}$
- $\sum E_{\rm ch} + \sum E_{\gamma} \sim E_{had}$
- $p_{\rm hard} \sim E_{\rm had}$
- $\sum |1/\theta_{\rm had}| \sim E_{\rm had}$
- $\tan \theta_{\text{cone}}^S = (\sum p_{T,i}) / (\sum p_i) \sim H_T / E_{\text{had}}$
- $\tan \theta_{\text{cone}}^V = (\sum \vec{p}_{T,i}) / (\sum p_i) \sim \vec{p}_T / E_{\text{had}}$
- Largest Azimuthal Gap: The largest difference in azimuthal angle between two neighbouring tracks,  $\Delta \phi_{\text{max}}$ .
- Track-MET-Angle: The azimuthal angle between the reconstructed missing transverse momentum,  $\vec{p}_T$  and the nearest track,  $\Delta \phi_{MET}$ .

 $\mathcal{A} \mathcal{A} \mathcal{A}$ 

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

#### Backup Slides-Other Observables













Roshan Mammen Abraham

NC  $\nu$  interaction at FASER $\nu$ 

FPF-2020

5900

11 / 15

# Backup Slides - Comparing various NHs



Figure: Comparison of (left) charged track multiplicity and (right)  $\sum |1/\theta_{\text{had}}|$  for  $n, p, \pi^0, \pi^+$  at 100,1000 GeV.

P

 $\mathcal{A} \mathcal{A} \mathcal{A}$ 

=

# Backup Slides - Background Observables: Pythia vs EPOSLHC vs QGSJET



Roshan Mammen Abraham

NC  $\nu$  interaction at FASER $\nu$ 

FPF-2020 13 / 15

SQ (~

# Backup Slides - Prediction with Different Backgrounds: Pythia vs EPOSLHC vs QGSJET



Roshan Mammen Ab<u>raham</u>

FPF-2020 14 / 15

э

SQ (~

.∃ ►

< 一 →

< □ ▶

#### Backup Slides - Neural Network Results



Figure: (Left) Signal identification efficiency and (right) feature importance.

FPF-2020 15/15

Э

SQA

э.

∃ >

▲ (□) ▶ ▲

< □ ▶