

Jet flavor tagging for FCCee

Loukas Gouskos (CERN) and Michele Selvaggi (CERN)

FCCee Physics performance meeting Mon, Sep 21, 2020

Physics motivation

- Flavour tagging essential for the e⁺e⁻ program, e.g.:
 - Higgs Sector:
 - (HL-)LHC can access 3rd gen. couplings and a few of 2nd generation
 - Future e⁺e⁻: Measure Higgs particle properties and interactions in challenging decay modes
 - E.g. cc, 1st gen quarks/fermions, gg [?]
 - Top quark physics [if E_{CM} sufficient]
 - Precise determination of top properties [mass, width, Yukawa]

Scope of this talk:

Present the first implementation of a jet flavor tagging algorithm for FCCee By all means: not a final version; rather a demonstration of the full setup [e.g. Sample production, algorithm design, ..]

Introduction

- A jet in theory: Spray of particles produced by the hadronization of quarks and gluons
- A jet experimentally: A cone of reconstructed particles in the detector
- Experience at LHC:
 - particle-based jet tagging allows to explore much more of the detector's potentials
 - yielding the most powerful results [by far..]
- Precise PF event reconstruction critical for powerful jet tagging
 - Rich information for each particle
 - energy/momentum/position..

Light quark?, b? c? g?, ..

- displacement from PV, particle type, track quality,..
- [O(30) properties/particle] x [~30-40 particles/jet] ~O(1000) inputs/jet
 - Perfect case for DNN with "complex" architecture

Designing a jet tagging algorithm

- How to represent a jet is one of the key aspects of algorithms for jet physics
 - Improve performance \rightarrow extend physics reach
 - Lead to fresh insight into jets \rightarrow deepen our understanding of jet physics
- Particles [associated to each jet] are intrinsically unordered
 - i.e., ordering by p_T(particle) or displacement from PV: suboptimal
 - primary information: 2D coordinates in theta-phi space (or eta-phi at the LHC)
 - Additional features: energy, displacement, charge, track quality...

Jet tagging: From point clouds

Point cloud

Image from:

https://news.voyage.auto/an-introduction-to-lidar-the-key-self-driving-car-sensor-a7e405590cff

- Point cloud (Wikipedia):
 - a set of data points in space
 - produced by 3D scanners, which measure a large number of points on the external surfaces of objects around them

Jet tagging: From point clouds to particle clouds

Point cloud

Image from:

https://news.voyage.auto/an-introduction-to-lidar-the-key-self-driving-car-sensor-a7e405590cff

- Point cloud (Wikipedia):
 - a set of data points in space
 - produced by 3D scanners, which measure a large number of points on the external surfaces of objects around them

Particle cloud

- Particle cloud (Wikipedia):
 - a set of particles points in space
 - produced by clustering a large number of particles measured by the detectors

ParticleNet for jet tagging ParticleNet [Huilin Qu, LG]

Jet representation:

PRD 101 (2020) 5, 056019 CMS-DP-2020-002

- Inspired by "point clouds" we developed "ParticleNet": unordered set of particles
 - Particles organized using the theta-phi coordinates
 - Then for each particle: include information (features) related to energy,. displacement, track info, track type .. [full list in the back-ups]

- Use state-of-the-art ML techniques:
 - Treat the particle cloud as a graph
 - each particle is a vertex, connections between particles are the edges
 - Follow a hierarchical learning approach: from "local" info to more "global"
 - i.e. convolution operation
 - add references

ParticleNet for jet tagging (II)

- In a nutshell:
 - For each point of the graph find the k-nearest neighbors [distance defined based on the particle "coordinates"]
 - **Initially:** closest neighbors are defined based on theta-phi
 - **Then:** after each convolution step explore additional particle features [energy, displacement, charge ...] and output a set of "learned" features
 - these features can be interpreted as coordinates in a high-dimensional space
 - Dynamically update the Graph: Recompute the "distances" between the particles after each convolution step [layer]: update the k-nearest neighbors

Sample/generation details

- Samples generated using Delphes for the detector response
 - including FastTrackCovariance [from Franco Bedeschi]
 - Standalone C++ implementation
 - TRK implementation including material
 - Computes the full covariance matrix
 - Included multiple scattering
 - computes smeared track using the off-diagonal terms

- MG5+Pythia8 used to generate ZH->vvXX events where X:g, ud, s, c, b
- Jets clustered with the generalized- k_T algorithm [similar to anti-kT] with R=1.5
 - IRC safe, etc..

ParticleNet for jet tagging at FCCee

Input variables

3D signed IP; in the

jet direction

• For the leading [in energy] particle:

dxy impact parameter

More information: jet types comparison & between detectors [IDEA vs. CLD]:

https://selvaggi.web.cern.ch/selvaggi/FCC/FCCee/FlavourTagging/

Input variables (II)

More information: jet types comparison & between detectors [IDEA vs. CLD]:

https://selvaggi.web.cern.ch/selvaggi/FCC/FCCee/FlavourTagging/

Performance [IDEA detector]

Output scores:

- **binary**: separation between two particle species
- raw: separation among of particle species used for the training

Performance: ROC curves

Performance already pretty competitive: particularly for charm-tagging

• NB. highly suboptimal tuning of the algorithm

jet tagging in practice

\sqrt{s} (GeV)	240		365	
Luminosity (ab^{-1})	5		1.5	
$\delta(\sigma BR)/\sigma BR$ (%)	HZ	$\nu \bar{\nu}$ H	HZ	$\nu \bar{\nu} H$
$H \rightarrow any$	± 0.5		± 0.9	
$ H \rightarrow b\bar{b}$	± 0.3	± 3.1	± 0.5	± 0.9
$H \rightarrow c\bar{c}$	± 2.2		± 6.5	± 10
$H \rightarrow gg$	± 1.9		± 3.5	± 4.5
$ H \rightarrow W^+W^-$	± 1.2		± 2.6	± 3.0
$H \rightarrow ZZ$	± 4.4		± 12	± 10
$H \rightarrow \tau \tau$	± 0.9		± 1.8	± 8
$H \rightarrow \gamma \gamma$	± 9.0		± 18	± 22
$ H \rightarrow \mu^+ \mu^-$	± 19		± 40	
$H \rightarrow invis.$	< 0.3		< 0.6	

Back of the envelop:

– FCCee: σ_{ZH}~200 fb, L~5 ab⁻¹ (2IP)~**1M ZH** [600k H→bb, 100k H→gg, 30k H→cc]

- Scenario:

c-tag: 70%, b-mistag: 10%, g-mistag:~10% $\delta(\sigma BR)/\sigma BR$ (%) ~ 1.5 [no systematics]

 Improving b/g rejection by a factor of 2 would result to ~1% uncertainty

Results look promising

<u>Ref</u>: Patrick's talk at the CDR Symposium; March 2019

Loukas Gouskos

Summary & outlook

- Current status:
 - The entire chain from designing the jet tagging algorithm, production of input samples and definition of metrics in place
 - final touches to the network and we will provide a recipe
 - o based on "weaver": <u>https://github.com/hqucms/weaver</u>
 - First very preliminary results look promising
- Planned improvements/goals:
 - Include additional jet types: ud, s, [together with g, c and b]
 - Additional input variables [e.g., full covariance matrix, secondary vertex information] + jet clustering algorithms
 - Optimize network parameters
 - Bonus: Estimate calibration uncertainties using Z bosons
- Ultimate goal: Compare performance for different detector configurations and find the best Tracker design

b-tagging performance

- Similar performance [take it with a lot of grain of salt]
 - yet conditions and detector potential very different [favoring the e⁺e⁻ case]
- Definitely worth exloring the recent developments in pp colliders
 - (a) Improve performance and/or achieve necessary performance with less complex (cheaper) detector solutions

Loukas Gouskos

c-tagging performance

- Charm-bottom separation: similar performance
- Charm-light separation: e⁺e⁻ shows better performance, but for the pp case:
 - results derived <u>before</u> the upgraded PIXEL detector
 - Algorithm does not explore the latest tagging developments
 - i.e. low-level features and advanced ML architecture

Loukas Gouskos

FCC-ee Physics Performance meeting; Mon, Sep 21, 2020