Z^{0}-pole flavour physics at FCC-ee

Donal Hill
21/9/20

FCC-ee Physics Performance meeting

A short introduction

- Thanks a lot for the invitation!
- I work on LHCb - mostly study $C P$ violation in $B^{ \pm} \rightarrow D^{(*)} K^{ \pm}$ decays and semileptonic modes such as $B^{0} \rightarrow D^{*-} \tau^{+} \nu_{\tau}$
- Approached Clement a short while ago about the upcoming Snowmass FCCSW tutorial
- Expressed an interest in flavour studies at the Z^{0}-pole
- Received lots of help to get up and running with some $Z^{0} \rightarrow b \bar{b}$ Pythia generation in FCCSW with Delphes
- Show initial studies today, describe the software I've been using, and outline what features will be needed going forward

Generation phase

- Setup FCCSW from here
- Used ee_Z_ddbar.cmd to create a ee_Z_bbbar.cmd Pythia config file, and run Pythia with Delphes using PythiaDelphes_config.py
- Generation is inclusive, in that the b-quarks produced hadronise to all sorts
- EvtGen config options have been added to FCCSW, but early tests indicate that it isn't generating purely the decays specified by the user in a . dec file
- Under discussion here
- Have generated 13 million events for the work shown today

b-quark truth-level kinematics

- At the Z^{0}-pole, expect Z^{0} production basically at rest so b-quarks should be produced back-to-back in lab frame
- Plot lab frame η and ϕ distribution of the two b-quarks
- η equal and opposite, ϕ differs by π - consistent with back-to-back production

B-hadron production fractions

- Look at the genParticles container and count fraction of each true particle type produced according to pdgId
- Production of B_{c}^{+}mesons is a nice feature at FCC-ee - no B_{c}^{+} produced at Belle II

B-hadron	Production fraction (\%)
B^{0}	43.0
$B^{ \pm}$	43.0
B_{s}^{0}	9.6
$B_{c}^{ \pm}$	0.04
Λ_{b}^{0}	3.7

Particle combinations

- Access to stable final-state hadrons via the pfcharged container
- Perform particle combinations per-event using awkward array with ROOT file loading using uproot
- These packages provide numpy-like access to jagged data from ROOT files
- Great for dealing with events containing different numbers of particles in each event
- Solid support within the HSF and PyHEP communities
- Particle combinatorics using ak. combinations (same particle type) and ak. cartesian (different particle types)

Example decay: $B^{-} \rightarrow\left(D^{0} \rightarrow K^{-} \pi^{+}\right) \pi^{-}$

- High-statistics mode at LHCb which forms part of the CKM angle γ measurements
- Related decays $B^{-} \rightarrow\left(D^{0} \rightarrow K^{-} \pi^{+}\right) \pi^{-}$and $B^{-} \rightarrow\left(D^{0} \rightarrow K^{-} \pi^{+}\right) K^{-}$(note K charge w.r.t. B) sensitive to γ

Expected yield at FCC-ee

Factor	Value
Z^{0} produced at FCC-ee	5×10^{12}
$\mathcal{B}\left(Z^{0} \rightarrow b \bar{b}\right)$	0.15
B from either b or \bar{b}	2
$B^{ \pm}$production fraction	0.43
$\mathcal{B}\left(B^{-} \rightarrow D^{0} \pi^{-}\right)$	4.7×10^{-3}
$\mathcal{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$	0.04
Total yield	121.3 million

- The yield above is for $7.5 \times 10^{11} b \bar{b}$ pairs
- My sample contains 13 million $Z^{0} \rightarrow b \bar{b}$, so expect 2100 $B^{-} \rightarrow D^{0} \pi^{-}$decays in the generated sample ${ }^{1}$

[^0]
D^{0} candidates

- Invariant mass distribution of $D^{0} \rightarrow K^{\mp} \pi^{ \pm}$candidates built from kaons and pions in the pfcharged container
- Select K and π based on their pdgId values (assumes perfect PID performance, in reality will have some mis-ID)
- Apply $p>4 \mathrm{GeV}$ cut to all candidate tracks - no vertex fits e.t.c.
- Some background present, but pretty clean given no dedicated selection in place

$B^{ \pm}$candidates

- Take $K \pi$ combinations passing a $\pm 25 \mathrm{MeV}$ mass window around PDG D^{0} mass, and combine them with pion candidates
- Encouraging to see a well-resolved B peak and low background level with minimal selection applied
- Peaks at low mass are due to partially reconstructed $B \rightarrow D^{*} \pi$ decays (studied in detail at LHCb, see previous slide)

Rough yield estimate (no mass fit)

- $B^{-} \rightarrow D^{0} \pi^{-}$peak is 330 events high (background-subtracted) and 5 bins wide
- Assume a triangle to give $N=330 \times 5 \times 0.5=825$
- This is 40% of the total expected $B^{-} \rightarrow D^{0} \pi^{-}$yield in the 13 M $Z^{0} \rightarrow b \bar{b}$ generated sample
- Includes hadron efficiency estimates in the IDEA Delphes card here and the $p>4 \mathrm{GeV}$ track cuts
- This would give a total $B^{-} \rightarrow D^{0} \pi^{-}$yield of ~ 50 million in the FCC-ee data
- Yield in $9 \mathrm{fb}^{-1}$ LHCb Run $1+2$ sample is ~ 2 million after all selection, so FCC-ee about an order higher ${ }^{2}$

[^1]
Software needs

FCCSW requirements for flavour studies

- Ability to generate samples of exclusive decays using EvtGen
- Work required in FCCSW to configure EvtGen appropriately
- General candidate building tools at the FCCSW level (rather than at user-level as I have done)
- Include MC-matching of the full decay chain
- LHCb software can hopefully help
- Candidate building includes not just kinematic information but track fit and vertex fit information
- Ability to study how often the entire event can be reconstructed
- If one side of the $b \bar{b}$ event can be fully reconstructed, this gives the 4 -vector of the other side (given well-known \sqrt{s})
- Valuable for modes with missing momentum, same ideas adopted at Belle II

Python analysis software for performance studies

- Initial studies using uproot for jagged ROOT file loading and awkward for manipulation
- Both packages are well-supported (Jim Pivarski main author) and many tutorials
- Analysed 13 million events in under 5 mins to produce the D^{0} and $B^{ \pm}$candidates, making combinations across all tracks in every event
- Interface seamlessly with other industry-standard packages like numpy for calculations and matplotlib for plotting
- The vector package (Henry Schreiner) is being worked on - will provide support for Lorentz vectors e.t.c. in the awkward format
- FCC studies can make use of these packages, with perhaps a common set of helper functions
- No need to reinvent the wheel with these tools in existence

Summary

- Many thanks to Clement and co. for the help in getting started with FCCSW and simulating events
- Early performance studies indicate:
- Sensible rates of B-hadron production
- High selection efficiencies for hadronic modes
- Low background levels with minimal selections applied
- Ability to study more decay modes, and in more detail, will help guide detector design requirements
- Low background level and ability to reconstruct other side of the $b \bar{b}$ event are positives for flavour at FCC-ee
- Looking forward: development in FCCSW for candidate building and MC-matching, use of uproot and awkward for performance studies

Backup

$m(\pi \pi)$ spectrum - ρ visible

$m(K K)$ spectrum - ϕ and D^{0}

$m(e e)$ spectrum $-J / \psi$ and γ conversion

True particle multiplicities in 1 million events

[^0]: ${ }^{1}$ Charge conjugation implied

[^1]: ${ }^{2}$ LHCb Upgrade I + II targets $300 \mathrm{fb}^{-1}$, which would surpass this

