Z^0 -pole flavour physics at FCC-ee

Donal Hill 21/9/20

FCC-ee Physics Performance meeting

A short introduction

- Thanks a lot for the invitation!
- I work on LHCb mostly study CP violation in $B^{\pm} \rightarrow D^{(*)}K^{\pm}$ decays and semileptonic modes such as $B^0 \rightarrow D^{*-}\tau^+\nu_{\tau}$
- Approached Clement a short while ago about the upcoming Snowmass FCCSW tutorial
 - Expressed an interest in flavour studies at the Z^0 -pole
- Received lots of help to get up and running with some $Z^0 \to b \bar b$ Pythia generation in FCCSW with Delphes
- Show initial studies today, describe the software I've been using, and outline what features will be needed going forward

- \cdot Setup FCCSW from <u>here</u>
- Used ee_Z_ddbar.cmd to create a ee_Z_bbbar.cmd Pythia config file, and run Pythia with Delphes using PythiaDelphes_config.py
- Generation is inclusive, in that the *b*-quarks produced hadronise to all sorts
 - *EvtGen* config options have been added to FCCSW, but early tests indicate that it isn't generating purely the decays specified by the user in a .*dec* file
 - \cdot Under discussion <u>here</u>
- Have generated 13 million events for the work shown today

b-quark truth-level kinematics

- At the Z⁰-pole, expect Z⁰ production basically at rest so *b*-quarks should be produced back-to-back in lab frame
- + Plot lab frame η and ϕ distribution of the two b-quarks
 - + η equal and opposite, ϕ differs by π consistent with back-to-back production

B-hadron production fractions

- Look at the *genParticles* container and count fraction of each true particle type produced according to *pdgId*
- Production of B_c^+ mesons is a nice feature at FCC-ee no B_c^+ produced at Belle II

B-hadron	Production fraction (%)
B^0	43.0
B^{\pm}	43.0
B_s^0	9.6
B_c^{\pm}	0.04
Λ_b^0	3.7

Particle combinations

- Access to stable final-state hadrons via the *pfcharged* container
- Perform particle combinations per-event using <u>awkward array</u> with ROOT file loading using uproot
- These packages provide *numpy*-like access to jagged data from ROOT files
 - Great for dealing with events containing different numbers of particles in each event
 - $\cdot\,$ Solid support within the HSF and PyHEP communities
- Particle combinatorics using *ak.combinations* (same particle type) and *ak.cartesian* (different particle types)

Example decay: $B^- \rightarrow (D^0 \rightarrow K^- \pi^+) \pi^-$

- High-statistics mode at LHCb which forms part of the CKM angle γ measurements
- Related decays $B^- \to (D^0 \to K^- \pi^+)\pi^-$ and $B^- \to (D^0 \to K^- \pi^+)K^-$ (note K charge w.r.t. B) sensitive to γ

2011 - 2016 LHCb data [LHCb-PAPER-2017-021]

Expected yield at FCC-ee

Factor	Value
Z^0 produced at FCC-ee	5×10^{12}
$\mathcal{B}(Z^0 \to b\bar{b})$	0.15
B from either b or $ar{b}$	2
B^{\pm} production fraction	0.43
$\mathcal{B}(B^- \to D^0 \pi^-)$	4.7×10^{-3}
${\cal B}(D^0\to K^-\pi^+)$	0.04
Total yield	121.3 million

- The yield above is for $7.5 imes 10^{11} \ b ar{b}$ pairs
- My sample contains 13 million $Z^0 \to b\bar{b}$, so expect **2100** $B^- \to D^0 \pi^-$ decays in the generated sample¹

¹Charge conjugation implied

D^0 candidates

- Invariant mass distribution of $D^0 \to K^{\mp} \pi^{\pm}$ candidates built from kaons and pions in the *pfcharged* container
- Select K and π based on their *pdgId* values (assumes perfect PID performance, in reality will have some mis-ID)
- Apply p > 4 GeV cut to all candidate tracks no vertex fits e.t.c.
 - Some background present, but pretty clean given no dedicated selection in place

B^{\pm} candidates

- Take $K\pi$ combinations passing a $\pm 25~{\rm MeV}$ mass window around PDG D^0 mass, and combine them with pion candidates
- Encouraging to see a well-resolved *B* peak and low background level with minimal selection applied
- Peaks at low mass are due to partially reconstructed $B\to D^*\pi$ decays (studied in detail at LHCb, see previous slide)

Rough yield estimate (no mass fit)

- * $B^- \rightarrow D^0 \pi^-$ peak is 330 events high (background-subtracted) and 5 bins wide
- Assume a triangle to give $N = 330 \times 5 \times 0.5 = 825$
- This is 40% of the total expected $B^-\to D^0\pi^-$ yield in the 13M $Z^0\to b\bar{b}$ generated sample
- Includes hadron efficiency estimates in the IDEA Delphes card $\underline{\rm here}$ and the $p>4~{\rm GeV}$ track cuts
- This would give a total $B^- \to D^0 \pi^-$ yield of ~ 50 million in the FCC-ee data
 - + Yield in 9 fb⁻¹ LHCb Run 1 + 2 sample is \sim 2 million after all selection, so FCC-ee about an order higher 2

 2 LHCb Upgrade I + II targets 300 fb $^{-1}$, which would surpass this

Software needs

FCCSW requirements for flavour studies

- Ability to generate samples of exclusive decays using EvtGen
 - Work required in FCCSW to configure EvtGen appropriately
- General candidate building tools at the FCCSW level (rather than at user-level as I have done)
 - Include MC-matching of the full decay chain
 - LHCb software can hopefully help
- Candidate building includes not just kinematic information but track fit and vertex fit information
- $\cdot\,$ Ability to study how often the entire event can be reconstructed
 - If one side of the $b\bar{b}$ event can be fully reconstructed, this gives the 4-vector of the other side (given well-known $\sqrt{s})$
 - Valuable for modes with missing momentum, same ideas adopted at Belle II

Python analysis software for performance studies

- Initial studies using *uproot* for jagged ROOT file loading and *awkward* for manipulation
- Both packages are well-supported (Jim Pivarski main author) and many tutorials
 - Analysed 13 million events in under 5 mins to produce the D^0 and B^\pm candidates, making combinations across all tracks in every event
 - Interface seamlessly with other industry-standard packages like *numpy* for calculations and *matplotlib* for plotting
 - The *vector* package (Henry Schreiner) is being worked on will provide support for Lorentz vectors e.t.c. in the *awkward* format
- FCC studies can make use of these packages, with perhaps a common set of helper functions
 - \cdot No need to reinvent the wheel with these tools in existence

Summary

- Many thanks to Clement and co. for the help in getting started with FCCSW and simulating events
- Early performance studies indicate:
 - Sensible rates of *B*-hadron production
 - High selection efficiencies for hadronic modes
 - Low background levels with minimal selections applied
- Ability to study more decay modes, and in more detail, will help guide detector design requirements
- Low background level and ability to reconstruct other side of the $b\bar{b}$ event are positives for flavour at FCC-ee
- Looking forward: development in FCCSW for candidate building and MC-matching, use of *uproot* and *awkward* for performance studies

Backup

$\overline{m(\pi\pi)}$ spectrum - ρ visible

$\overline{m(KK)}$ spectrum - ϕ and D^0

 $\overline{m(\mu\mu)}$ spectrum - J/ψ

m(ee) spectrum - J/ψ and γ conversion

True particle multiplicities in 1 million events

