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Source routines

An introduction to a new approach to source routines



Why user routines?

• Fluka offers plenty of built-in tools to define primary beams and estimate quantities

• Sometime these are not enough

• There is the need to write some dedicated code: a “User Routine”

• UR are beyond the scope of this course because of intrinsic difficulties

• Nevertheless, we have a started an effort to make URs more user-friendly

• We want to introduce here the first effort in this direction:

a new format for the source routine

• Why the source routine first? Built-in options allow to sample from a limited number

of distribution and not from histograms. This is an effort to overcome this limitation 
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The “old” source routine

• Scary for beginners, limited documentation

• Use of IMPLICIT and FORTRAN77 naming convention (see later)
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The “new” source routine

• To be distributed in the next release

• Simplified appearance

• Long & meaningful names for variables and routines

• Use of implicit none (see later)

• Abundant comments (removed in the snapshot)

• Variables for user’s usage clearly indicated

• Lines not to be edited are “hidden” in routines

in the source_library.inc library file

• Old source routines can still be used

Comments removed for clarity in this snapshot
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The “new” source routine

• Without removing comments (notice the ratio code_lines / comment_lines)

• Note: the snapshot is not meant to be read

• A step by step look will follow
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History of Fortran

• Fortran born in the early 1950s, and the first compiler was released in 1957

Standards:

• Fortran 66 – The first standard

• Fortran 77 – Extension on Fortran 66

• Fortran 90 – Dynamic memory allocation / introduction of the Free format

• Fortran 95 – High performance Fortran specification

• Fortran 2003 – Object oriented programming

• Fortran 2008 / 2018 – Extensions of Fortran 2003 

FLUKA is still mostly (if not fully) compatible Fortran 77

This doesn’t mean that we can’t use newer things in our user routines
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(Unexpected) Features and limitations of Fortran (77)

• Source file format

• Fixed

• Free

• Naming convention

• Subprograms

• Functions

• Subroutines

• Variable declaration

• Implicit

• Explicit
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Source file format

• Fortran 77 uses the Fixed file format (extensions: .f or .for):

• Maximum 78 characters in one line

• First 6 are reserved for special function:

• If the first character is ‘c’ or ‘*’, then the line is a comment

• If the 6th position is not empty, then the line is treated as a continuation of the previous one

(Often the ‘&’ character is used)

• With the gfortran compiler it is possible to increase the maximum line length

• In FLUKA 4 it is set to 132

• Fortran 90 introduced the Free format (extensions: .f90, [.f95, etc.]):

• Code can start at the 1st position

• Note: It is not possible to mix both in the same source file

Gfortran compiler expects the “correct” format based on the file extension.
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Naming convention

• Fortran 77 variable and (subprogram) names:

• Limited to 6 alphanumerical characters

• Have to start with a letter

• Case insensitive

• Starting with Fortran 90 the variable names

• Can be up to 31 character long

• Can contain letters, numbers and underscore (‘_’)

• Have to start with a letter

• Case insensitive

• Note: Try to use descriptive names, to make code readable
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Feature exploited in 

the new source routine



Subprograms

• Two types:

• Function

• Has a return value

• Used in assignment: variable = function(input_variable_1, …)

• Subroutine

• Doesn’t have a return value

• Accessible with the CALL statement: call subroutine(input_variable_1, …)

• Passing variables

• In Fortran you pass the variable, not the value of the variable. (Like passing a pointer in C)

• This means the subprograms may irreversibly modify the value of the input variables

• Desired behavior if you want to return multiple variables

• Can lead to side effects
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Variable declaration

• Fortran by default uses implicit declaration, which means the type of the variable 

(integer, real, etc.) is determined by a preset rule.

• The default rule is:

• If the variable starts with the letter I, J, K, L, M, or N it is an integer,

• Otherwise it is a real (single precision float)

• In FLUKA however:

• Variables with the 1st letter I, J, K, L, M, and N are still integers

• But the others are double precision (floats)

• It is possible (and necessary) to overwrite this with explicit declaration, where you 

manually specify the type of the variable, like:
double precision my_intensity

logical my_flag

Source routines 11



Variable declaration

• Biggest issue is that typos remain hidden:

If you have a typo in a variable name, the compiler won’t raise an error

It is a different, but valid variable without a value

Using it in calculations will lead to unexpected results

• Other issue is the unexpected type conversion:

For example: Information is lost if you want to assign a double precision number to INTEGER

• Solution in the “new” source routine: implicit none

This statement disables the implicit declaration and every variable has to me manually declared

Exception: FLUKAs built in variables don’t need to be declared in the source routine

(they will remain implicitly declared)

• Convention in the “new” source routine:

• Variables with uppercase names: FLUKA variables

• Variables with lowercase names: explicitly declared variables
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Numbers and Constants in User routines

• To keep the high accuracy of the calculation

• Every variable containing a floating point number should have the type double precision

• The assigned numbers should also be double precision:

For example: radius = 2.0D0

The ‘D’ character indicated, that this is number should be treated as double precision.

If it is ‘E’ or missing, then the number will be single precision

• To simplify writing numbers FLUKA already defined many numbers as variables:
• ONEONE = 1.0D0

• TWOTWO = 2.0D0

• HLFHLF = 0.5D0

• PIPIPI = 𝝅 = 3.141592…

• TWOPIP = 𝟐𝝅 = 6.283185…

Full list available in the dblprc.inc include file
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Source routine – initialization

if ( lfirst ) then

call initialization( lfirst )

end if

• Initialization of internal variables

• Only performed the first time the routine is called
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Source routine – particle type

particle_code = IJBEAM

• By default the particle type given in the BEAM card is taken (IJBEAM variable)

• The particle type can be overridden in the source routine

• Possible application: beam made of more than one type particles

• Particle codes explained in Fluka manual section 5.1
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Source routine – particle momentum/energy

momentum_energy = PBEAM

energy_logical_flag = .false.

• By default the particle momentum given in the BEAM card is taken (PBEAM variable)

• PBEAM is calculated internally by Fluka

• PBEAM is always the momentum even if energy was provided in the BEAM card

• Energy can be given in the source routine by setting the logical flag as true
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• Some predefined routines (4 functions and 1 subroutine) are already available

Flat spectrum

Gaussian spectrum

Maxwell-Boltzmann spectrum

Spectrum from histogram

Exponential spectrum

(via the change of

particle’s weight)

Source routine – particle momentum/energy
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Source routine – particle weight

particle_weight = ONEONE

• Allows to set the weight of the primary particles

• 99% of the times weight=1 is ok

• Can be changed to distort the distribution of primaries (e.g. exponential distribution)

• Can be useful if dealing with more than one single type of primaries

• Not for a beginners’ use, mentioned here for completeness
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Source routine – beam divergence

divergence_x = DIVBM

divergence_y = DIVBM

gaussian_divergence_logical_flag = LDVGSS

• By default, values are taken from the BEAM card

• Divergence values are taken

• As Gaussian FWHM, if flag set .true.

• As flat distribution full angle, if flag set .false.
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X-Z plane

Y-Z plane



Source routine – beam starting position

coordinate_x = XBEAM

coordinate_y = YBEAM

coordinate_z = ZBEAM

• By default, values are taken from the BEAMPOS card

• Extended sources can be defined using different starting positions

Source routines 20

4          5



Source routine – beam starting position
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• Some predefined routines (2 functions and 1 subroutine) are already available

Flat/Gaussian spatial distribution

for the chosen coordinate

(x,y) coordinates of an annular distribution

centered on the provided location



Source routine – beam direction

direction_cosx = UBEAM

direction_cosy = VBEAM

direction_cosz = WBEAM

direction_flag = 0

• By default, values are taken from the BEAM card

• If direction_flag = 0 : 

all 3 director cosines are considered 

(normalization is performed in a subroutine)
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Source routine – beam direction

direction_cosx = UBEAM

direction_cosy = VBEAM

direction_cosz = WBEAM

direction_flag = 0

• By default, values are taken from the BEAM card

• If direction_flag = 1 : 

direction_cosz is calculated from the other 2

and assumed positive
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Source routine – beam direction

direction_cosx = UBEAM

direction_cosy = VBEAM

direction_cosz = WBEAM

direction_flag = 0

• By default, values are taken from the BEAM card

• If direction_flag = 2 : 

direction_cosz is calculated from the other 2

and assumed negative
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Source routine – beam direction
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• A predefined subroutine is are already available

Isotropic direction



Source routine – other parameters

polarization_cosx = -TWOTWO

polarization_cosy = ZERZER

polarization_cosz = ZERZER

particle_age = ZERZER

kshort_component = -TWOTWO

delayed_radioactive_decay = ZERZER

• Variable names are pretty self-explanatory

• Not for beginners’ use
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Source routine – lines not to be touched

call set_internal_flags()

call set_beam_type(…)

call set_particle_momentum_energy_weight(…)

call set_particle_coordinates(…)

call set_particle_direction(…)

call set_particle_polarization(…)

call set_particle_age(…)

call search_starting_region()

• These calls pass the provided inputs to Fluka

• Not to be touched for any reason 
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Some predefined FLUKA random sampling routines
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• Fluka offers some predefined routines for random sampling

• my_variable = FLRNDM(XDUMMY)

Assigns a 64-bit random number in [0,1)

• call FLNRRN(gauss1)

Returns a Gaussian distributed random number

• call FLNRR2(gauss1,gauss2)

Returns two uncorrelated Gaussian distributed random numbers

• call SFECFE(sint,cost)

Returns sine and cosine of a random azimuthal angle



Compile
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1. Add the routine

2. Verify that it appears

3. Insert the name of your executable

4. Select the compiler

5. Build your executable

1

2

3

4
5

• Warning: the library file (source_library.inc) must be 

in the same directory of the source file (source_layer.f)



SOURCE card and passing parameters
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• To invoke a source routine it is necessary to add a SOURCE card

• A SOURCE card can be empty or can be used to pass parameters to the routine

• Max. 18 numerical values (WHASOU(ii)) and 1 string can be passed (SDUSOU) 

SOURCE card and BEAM card can coexist

• Good practice advice: 

even if the beam energy/momentum is defined in the source routine,

specify it in the BEAM card as it is used internally as default for some scoring 



Time to do some hands-on practice!
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• We will now see together a small example of “new” source routine




