
Beg i n n er o n l i n e t ra i n i n g , F a l l 2020

Source routines

An introduction to a new approach to source routines

Why user routines?

• Fluka offers plenty of built-in tools to define primary beams and estimate quantities

• Sometime these are not enough

• There is the need to write some dedicated code: a “User Routine”

• UR are beyond the scope of this course because of intrinsic difficulties

• Nevertheless, we have a started an effort to make URs more user-friendly

• We want to introduce here the first effort in this direction:

a new format for the source routine

• Why the source routine first? Built-in options allow to sample from a limited number

of distribution and not from histograms. This is an effort to overcome this limitation

Source routines 2

The “old” source routine

• Scary for beginners, limited documentation

• Use of IMPLICIT and FORTRAN77 naming convention (see later)

Source routines 3

The “new” source routine

• To be distributed in the next release

• Simplified appearance

• Long & meaningful names for variables and routines

• Use of implicit none (see later)

• Abundant comments (removed in the snapshot)

• Variables for user’s usage clearly indicated

• Lines not to be edited are “hidden” in routines

in the source_library.inc library file

• Old source routines can still be used

Comments removed for clarity in this snapshot

Source routines 4

The “new” source routine

• Without removing comments (notice the ratio code_lines / comment_lines)

• Note: the snapshot is not meant to be read

• A step by step look will follow

Source routines 5

1 2 3 4 5

History of Fortran

• Fortran born in the early 1950s, and the first compiler was released in 1957

Standards:

• Fortran 66 – The first standard

• Fortran 77 – Extension on Fortran 66

• Fortran 90 – Dynamic memory allocation / introduction of the Free format

• Fortran 95 – High performance Fortran specification

• Fortran 2003 – Object oriented programming

• Fortran 2008 / 2018 – Extensions of Fortran 2003

FLUKA is still mostly (if not fully) compatible Fortran 77

This doesn’t mean that we can’t use newer things in our user routines

Source routines 6

(Unexpected) Features and limitations of Fortran (77)

• Source file format

• Fixed

• Free

• Naming convention

• Subprograms

• Functions

• Subroutines

• Variable declaration

• Implicit

• Explicit

Source routines 7

Source file format

• Fortran 77 uses the Fixed file format (extensions: .f or .for):

• Maximum 78 characters in one line

• First 6 are reserved for special function:

• If the first character is ‘c’ or ‘*’, then the line is a comment

• If the 6th position is not empty, then the line is treated as a continuation of the previous one

(Often the ‘&’ character is used)

• With the gfortran compiler it is possible to increase the maximum line length

• In FLUKA 4 it is set to 132

• Fortran 90 introduced the Free format (extensions: .f90, [.f95, etc.]):

• Code can start at the 1st position

• Note: It is not possible to mix both in the same source file

Gfortran compiler expects the “correct” format based on the file extension.

Source routines 8

Naming convention

• Fortran 77 variable and (subprogram) names:

• Limited to 6 alphanumerical characters

• Have to start with a letter

• Case insensitive

• Starting with Fortran 90 the variable names

• Can be up to 31 character long

• Can contain letters, numbers and underscore (‘_’)

• Have to start with a letter

• Case insensitive

• Note: Try to use descriptive names, to make code readable

Source routines 9

Feature exploited in

the new source routine

Subprograms

• Two types:

• Function

• Has a return value

• Used in assignment: variable = function(input_variable_1, …)

• Subroutine

• Doesn’t have a return value

• Accessible with the CALL statement: call subroutine(input_variable_1, …)

• Passing variables

• In Fortran you pass the variable, not the value of the variable. (Like passing a pointer in C)

• This means the subprograms may irreversibly modify the value of the input variables

• Desired behavior if you want to return multiple variables

• Can lead to side effects

Source routines 10

Variable declaration

• Fortran by default uses implicit declaration, which means the type of the variable

(integer, real, etc.) is determined by a preset rule.

• The default rule is:

• If the variable starts with the letter I, J, K, L, M, or N it is an integer,

• Otherwise it is a real (single precision float)

• In FLUKA however:

• Variables with the 1st letter I, J, K, L, M, and N are still integers

• But the others are double precision (floats)

• It is possible (and necessary) to overwrite this with explicit declaration, where you

manually specify the type of the variable, like:
double precision my_intensity

logical my_flag

Source routines 11

Variable declaration

• Biggest issue is that typos remain hidden:

If you have a typo in a variable name, the compiler won’t raise an error

It is a different, but valid variable without a value

Using it in calculations will lead to unexpected results

• Other issue is the unexpected type conversion:

For example: Information is lost if you want to assign a double precision number to INTEGER

• Solution in the “new” source routine: implicit none

This statement disables the implicit declaration and every variable has to me manually declared

Exception: FLUKAs built in variables don’t need to be declared in the source routine

(they will remain implicitly declared)

• Convention in the “new” source routine:

• Variables with uppercase names: FLUKA variables

• Variables with lowercase names: explicitly declared variables

Source routines 12

Numbers and Constants in User routines

• To keep the high accuracy of the calculation

• Every variable containing a floating point number should have the type double precision

• The assigned numbers should also be double precision:

For example: radius = 2.0D0

The ‘D’ character indicated, that this is number should be treated as double precision.

If it is ‘E’ or missing, then the number will be single precision

• To simplify writing numbers FLUKA already defined many numbers as variables:
• ONEONE = 1.0D0

• TWOTWO = 2.0D0

• HLFHLF = 0.5D0

• PIPIPI = 𝝅 = 3.141592…

• TWOPIP = 𝟐𝝅 = 6.283185…

Full list available in the dblprc.inc include file

Source routines 13

Source routine – initialization

if (lfirst) then

call initialization(lfirst)

end if

• Initialization of internal variables

• Only performed the first time the routine is called

Source routines 14

1 2 3

Source routine – particle type

particle_code = IJBEAM

• By default the particle type given in the BEAM card is taken (IJBEAM variable)

• The particle type can be overridden in the source routine

• Possible application: beam made of more than one type particles

• Particle codes explained in Fluka manual section 5.1

Source routines 15

1 2 3

Source routine – particle momentum/energy

momentum_energy = PBEAM

energy_logical_flag = .false.

• By default the particle momentum given in the BEAM card is taken (PBEAM variable)

• PBEAM is calculated internally by Fluka

• PBEAM is always the momentum even if energy was provided in the BEAM card

• Energy can be given in the source routine by setting the logical flag as true

Source routines 16

1 2 3

• Some predefined routines (4 functions and 1 subroutine) are already available

Flat spectrum

Gaussian spectrum

Maxwell-Boltzmann spectrum

Spectrum from histogram

Exponential spectrum

(via the change of

particle’s weight)

Source routine – particle momentum/energy

Source routines 17

Source routine – particle weight

particle_weight = ONEONE

• Allows to set the weight of the primary particles

• 99% of the times weight=1 is ok

• Can be changed to distort the distribution of primaries (e.g. exponential distribution)

• Can be useful if dealing with more than one single type of primaries

• Not for a beginners’ use, mentioned here for completeness

Source routines 18

1 2 3

Source routine – beam divergence

divergence_x = DIVBM

divergence_y = DIVBM

gaussian_divergence_logical_flag = LDVGSS

• By default, values are taken from the BEAM card

• Divergence values are taken

• As Gaussian FWHM, if flag set .true.

• As flat distribution full angle, if flag set .false.

Source routines 19

1 2 3

X-Z plane

Y-Z plane

Source routine – beam starting position

coordinate_x = XBEAM

coordinate_y = YBEAM

coordinate_z = ZBEAM

• By default, values are taken from the BEAMPOS card

• Extended sources can be defined using different starting positions

Source routines 20

4 5

Source routine – beam starting position

Source routines 21

• Some predefined routines (2 functions and 1 subroutine) are already available

Flat/Gaussian spatial distribution

for the chosen coordinate

(x,y) coordinates of an annular distribution

centered on the provided location

Source routine – beam direction

direction_cosx = UBEAM

direction_cosy = VBEAM

direction_cosz = WBEAM

direction_flag = 0

• By default, values are taken from the BEAM card

• If direction_flag = 0 :

all 3 director cosines are considered

(normalization is performed in a subroutine)

Source routines 22

4 5

Source routine – beam direction

direction_cosx = UBEAM

direction_cosy = VBEAM

direction_cosz = WBEAM

direction_flag = 0

• By default, values are taken from the BEAM card

• If direction_flag = 1 :

direction_cosz is calculated from the other 2

and assumed positive

Source routines 23

4 5

Source routine – beam direction

direction_cosx = UBEAM

direction_cosy = VBEAM

direction_cosz = WBEAM

direction_flag = 0

• By default, values are taken from the BEAM card

• If direction_flag = 2 :

direction_cosz is calculated from the other 2

and assumed negative

Source routines 24

4 5

Source routine – beam direction

Source routines 25

• A predefined subroutine is are already available

Isotropic direction

Source routine – other parameters

polarization_cosx = -TWOTWO

polarization_cosy = ZERZER

polarization_cosz = ZERZER

particle_age = ZERZER

kshort_component = -TWOTWO

delayed_radioactive_decay = ZERZER

• Variable names are pretty self-explanatory

• Not for beginners’ use

Source routines 26

4 5

Source routine – lines not to be touched

call set_internal_flags()

call set_beam_type(…)

call set_particle_momentum_energy_weight(…)

call set_particle_coordinates(…)

call set_particle_direction(…)

call set_particle_polarization(…)

call set_particle_age(…)

call search_starting_region()

• These calls pass the provided inputs to Fluka

• Not to be touched for any reason

Source routines 27

4 5

Some predefined FLUKA random sampling routines

Source routines 28

• Fluka offers some predefined routines for random sampling

• my_variable = FLRNDM(XDUMMY)

Assigns a 64-bit random number in [0,1)

• call FLNRRN(gauss1)

Returns a Gaussian distributed random number

• call FLNRR2(gauss1,gauss2)

Returns two uncorrelated Gaussian distributed random numbers

• call SFECFE(sint,cost)

Returns sine and cosine of a random azimuthal angle

Compile

Source routines 29

1. Add the routine

2. Verify that it appears

3. Insert the name of your executable

4. Select the compiler

5. Build your executable

1

2

3

4
5

• Warning: the library file (source_library.inc) must be

in the same directory of the source file (source_layer.f)

SOURCE card and passing parameters

Source routines 30

• To invoke a source routine it is necessary to add a SOURCE card

• A SOURCE card can be empty or can be used to pass parameters to the routine

• Max. 18 numerical values (WHASOU(ii)) and 1 string can be passed (SDUSOU)

SOURCE card and BEAM card can coexist

• Good practice advice:

even if the beam energy/momentum is defined in the source routine,

specify it in the BEAM card as it is used internally as default for some scoring

Time to do some hands-on practice!

Source routines 31

• We will now see together a small example of “new” source routine

