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We follow Luscher’s DDHMC algorithm[1], but aim to implement this rather di↵erently. Large blocks will be
used, of O(324) and no attempt will be made to keep the Dirichlet BC block operators well conditioned. Rather we
aim to implement a communication avoiding algorithm for multi-GPU nodes, rather than to precondition the HMC
algorithm.

As discussed by the original author of DDHMC, the locality factorisation of the determinant must eventually
win in computing systems with penalties for non-locality. However, in highly parallel hardware optimising for cache
locality is not possible as opportunities for sequential ordering of access is limited.

This proposed usage will keep the number of active links in the HMC at close to 100%, while the force for the
boundary forces will be suppressed by the width of the bands of inactive links. This may decorrelate better than
the original DDHMC. The speed gain will come solely from avoiding communication slow down, and will reflect the
nature and cost of computing and data access in modern supercomputers.

1 Cuboidal domains and the Dirac operator

We decompose space time into hypercuboidal blocks of size L
4. The block coordinate is (integer division),

bi = xi/L,

and the intra block coordinate is,
li = xi|L,

while we assign to each block a parity,

p = (
X

i

bi)|2.

We then define two domains ⌦ and ⌦̄ as the set of points within blocks of parity zero and parity one respectively.
Their exterior boundaries haloes are @⌦ and @⌦̄ such that,

@⌦ \ ⌦ = ;,

and
@⌦̄ \ ⌦̄ = ;,

respectively.
The Dirac operator, with an appropriate non-lexicographic ordering may then be written as

D =

✓
D⌦ D@

D@̄ D⌦̄

◆
.

1.1 Schur decomposition

A matrix can be UDL factorised around its lower right block as follows,
✓

D C

B A

◆
=

✓
1 CA

�1

0 1

◆✓
S� 0
0 A

◆✓
1 0

A
�1

B 1

◆
, (1)

where the Schur complement,
S = D � CA

�1
B.
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Take the view that the domain will be the whole node 
Schur decompose and take determinant:

In the case of our Dirac operator,
✓

D⌦ D@

D ø@ D ø⌦

◆
=

✓
1 D@D ! 1

ø⌦
0 1

◆✓
D⌦ ! D@D ! 1

ø⌦ D ø@ 0
0 D ø⌦

◆✓
1 0

D ! 1
ø⌦ D ø@ 1

◆
. (2)

The factors L , M , and U are obvious and the inverses are

U! 1 =

✓
1 ! D@D ! 1

ø⌦
0 1

◆
(3)

L ! 1 =

✓
1 0

! D ! 1
ø⌦ D ø@ 1

◆
. (4)

We have, D ! 1 = L ! 1M ! 1U! 1.

2 Fermion determinant factorisation

Using the Schur decomposition we may write the Fermion determinant as,

detD = detD⌦ detD ø⌦ det
�
1 ! D ! 1

⌦ D@D ! 1
ø⌦ D ø@

 
,

where we identify
! = 1 ! D ! 1

⌦ D@D ! 1
ø⌦ D ø@

Following Luscher, we introduce projectors Pø@ with both spinor and space structure projecting all spinor elements
in ! connected by D ø@ to !̄ , and P@ projecting all spinor elements in !̄ connected by D@ to ! .

The matrix D ø@ acts only non-trivially on this subset of spinor components fields in " ø⌦,

D ø@Pø@ = D ø@ ,

and so Luscher[1] introduces the matrix,

R = 1 ! Pø@D ! 1
⌦ D@D ! 1

ø⌦ D ø@ .

Since in the right basis ! takes the form

! =

✓
1 ! X 0

Y 1

◆

we see that
det ! = detR = det(1 ! X )

We may therefore treat the determinant of ! via a usual pseudofermion integral only over those fields in the space
projected by Pø@ .

When R is taken as matrix from this space to itself, and is non-singular, with inverse

R! 1 = Pø@ ! Pø@D ! 1D ø@ .

This is most easily seen by expanding UDL decomposition of D ! 1, showing thtaa

R! 1R = (Pø@ ! Pø@D ! 1D ø@)(Pø@ ! Pø@D ! 1
⌦ D@D ! 1

ø⌦ D ø@) (5)

= Pø@ ! Pø@(D
! 1 + D ! 1

⌦ D@D ! 1
ø⌦ ! D ! 1D ø@Pø@D ! 1

⌦ D@D ! 1
ø⌦ )D ø@ (6)

= Pø@ ! Pø@D ! 1(1 + DD ! 1
⌦ D@D ! 1

ø⌦ ! D ø@D ! 1
⌦ D@D ! 1

ø⌦ )D ø@ (7)

We seek to show that the second term is zero, by inserting the form of D and UDL form of D ! 1,

Pø@D ! 1(1 + DD ! 1
⌦ D@D ! 1

ø⌦ ! D ø@D ! 1
⌦ D@D ! 1

ø⌦ )D ø@ (8)

= Pø@L ! 1M ! 1
✓

1 ! D@D ! 1
ø⌦

0 1

◆
(1 + D ø@D ! 1

⌦ D@D ! 1
ø⌦ + D@D ! 1

ø⌦ ! D ø@D ! 1
⌦ D@D ! 1

ø⌦ )D ø@(9)

= Pø@L ! 1M ! 1
✓

1 ! D@D ! 1
ø⌦

0 1

◆
(1 + D@D ! 1

ø⌦ )D ø@ (10)

Since only the lower row survives multiplication by the U! 1 matrix, the structure of M and L guarantee this term
vanishes. Thus, the inverse from the projected subspace to the subspace is indeed R! 1 given above.
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In the case of our Dirac operator,
!
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"
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The factors L , M , and U are obvious and the inverses are
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ø!

0 1

"
(3)

L�1 =
!

1 0
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ø! D ø! 1

"
. (4)

We have, D�1 = L�1M �1U�1.
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Since only the lower row survives multiplication by the U�1 matrix, the structure of M and L guarantee this term
vanishes. Thus, the inverse from the projected subspace to the subspace is indeedR�1 given above.
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Update only links not crossing between nodes 
Two factors on small timestep, boundary determinant on coarse timestep 

In the case of our Dirac operator,
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3 Two ßavour pseudofermion structure

We have written the Fermion determinant as the product of three terms, which may be estimated with distinct
pseudofermion estimators in a standard nested integrator HMC. Two of these are local to block, and have Dirichlet
boundary conditions.

For a real degenerate two flavour doublet, the local determinant terms can be written as,

| detD⌦ detD ⌦̄|2 =
Y

cells

| detDcell|2,

and we can use the usual even odd preconditioned pseudofermion action on each cell so long as Dirichlet boundary
conditions are maintained. This has the good e↵ect of removing communication from the corresponding force term.

3.1 Inactive Links

The two factors, local and boundary pseufodermions will be updated on di↵erent timescales. A separation of the
size of forces can be ensured by updating only a subset of the gauge links.

Links crossing from ⌦ to ⌦̄ will be removed from the HMC by projecting their momenta to zero, and neither
updating the links or momenta in the integrator. This can easily be achieved with a mask vector.

3.2 Force terms

Where the boundary links are all inactive (so D @̄ is not di↵erentiated) the force can be calculated as follows. The
force term for the local determinant factor is standard but restricted to the local cell, and only active links. However
all cells add together so the code implementation will be the standard one, and only the solver will di↵er.

For the determinant of R the chain rule gives,

�R�1 = P@̄D�1
�DD �1D @̄ .

Note that the force is suppressed by quark propagation by the distance from the gauge link to the surface or plane
of the domain boundary. The two flavour force is,

��
†
2(R

†R)�1
�2 = �

†
2(�R�†)R�1 + R�1

�R�1
�2 (11)

4 Integration

We might imagine that in the near future a local volume of 324 is quite reasonable, for say a 60 TFlop/s sustained
single precision node. The delivered cache bandwidth is given by the 1320 flops for Nc = 3 Wilson, and the
9 ⇥ 24 ⇥ 4 = 768 bytes of Fermion read/written to apply the 4D Wilson operator (L s times). This gives 0.65
Byte/flop. Of these 1/ 32 come form o↵ node, but in a two spinor form and 1/32 are sent o↵ node.

The bidirectional network requirement is therefore:

60TFlop/ s⇥ 0.65B/F/ 32 = 1200GB/s.

With 200 Gbps network interfaces A system in which the computation and communication time were equal would
require 4800 Gbps unidirectional connectivity and 24 HFI’s delivering wirespeed.

We will like lose a factor of four to communication as only 8 HFI’s are planned in the current round of Slingshot
systems.

This suggests a 4:1 Sexton Weingarten integration scheme is sought, andd if the L1 norm of the source can be
reduced by physical distance (band of three sites?) in the space of inactive links with a large block size we may
retain still (29/ 32)4 = 70% of links updating on any given trajectory. If only the domain crossing links are inactive,
then 90% of links can remain active.
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Force term suppressible in distance between active links and the boundary pseudofermion 



Rational di!ers from previous use by CLS (who had 6^4 domains). 

GPU systems will have (and do have) substantial caches. 
Ratio between multinode and single node performance will grow 

Can imagine 32^4 data points per GPU and 32x64^3 per node 
Percentage of active links is (31/32)^4 = 88% 

Better sampling e"ciency 

Imagine O(60TF/s) single node is possible. Already expect 40TF/s on A100/80 with 8 GPUÕs 

If 1/32 of data comes from o! node can generate enormous network requirement  
6x higher then fastest current system

Why adopt DDHMC?
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Booster performance

After a lot of e!ort working around MPI  issues

2x AMD Rome 
4x A100 
4x HDR-200

Atos Sequana - 16 nodes, 2x2x2x2, comms in 4D

Volume per GPU - will weak scale well

4.8x faster than Summit per node ! 
Expect another 25% if GDR improves



Projection of gains:   
Summit : 6.9TF/s vs 1.2 TF/s 

5.7x gain 
Booster : 9.5TF/s vs 5.7 TF/s 

1.6x Gain 
Hypothetical 60TF/s node with Booster network:  

10x Gain

My Conclusion: it is imperative to develop DDHMC for multiGPU systems 

May a!ord 10x acceleration of HMC 

Valence analysis is accelerated by trivial parallelism + deßation, HMC IS NOT

Conclusions


