What can we learn from the NA62 experiment?

Speaker: <u>Radoslav Marchevski (CERN)</u> LHCb UK Student meeting, 24th September 2020, Home

Introduction

- Why are Flavour Changing Neutral Currents and kaon physics important ?
- Why does $K^+ \rightarrow \pi^+ v \overline{v}$ is one of the golden channels of flavour physics?
- How can we overcome the experimental challenges and measure such a rare decay?
 - * Hint: We need a dedicated experiment with state-of-the-art detectors!
- What can we learn from NA62 Run 1(2016-2018) data?
 - ★ Focus on the 2018 data (preliminary results shown on ICHEP 2020)
- Prospects for the future

Kaon physics, a building block of the SM 462

- Discovery of strange particles [*Nature 160 4077 (1947) 855*]
- Postulation of neutral meson oscillation [PR 97 (1955) 1387]
- $\Theta \tau$ Puzzle: first hint of P violation [*PR 104 (1956) 254*]
- Discovery of CP violation in the K⁰ mixing [PRL 13 (1964) 138]
- 3 quark model to describe observed meson/baryon spectra [*PL* 8 (1964) 214]
- *c* quark prediction to explain the observed BR of $K_L \rightarrow \mu^+\mu^-$ [*PRD 2* (1970) 1285]
- Discovery of CP violation in the K⁰ decay [PLB 206 (1988) 169]

- First measurement of direct CP violation
- Test of CPT symmetry invariance
- Low energy QCD (e.g. χPT)
- Precision test of the CKM unitarity
- Test of lepton universality and flavour violation
- Rare K decays: SM and beyond

Kaon factories:

- 1997-2014 CERN SPS (NA48), CERN LEAR (CPLEAR), FNAL (KTEV), LNF (KLOE, KLOE2), BNL (E787, E865, E949), KEK (E391), Protvino (ISTRA+)
- 2014-today CERN SPS (NA48), JPARC (KOTO), CERN LHC (LHCb, K_s rare decay program)

- **FCNC** loop processes: $s \rightarrow d$ coupling and highest CKM suppression
- Theoretically clean: Short distance contribution
- Hadronic matrix element measured with $K^{\pm} \rightarrow \pi^0 l^{\pm} v_l$ decays (sub-% precision!)
- SM predictions: Buras. et. al., JHEP11(2015)033

$$BR(K^{+} \to \pi^{+} \nu \overline{\nu}) = (0.84 \pm 0.03) \times 10^{-10} \left(\frac{|V_{cb}|}{0.0407}\right)^{2.8} \left(\frac{\gamma}{73.2^{\circ}}\right)^{0.74} = (0.84 \pm 0.10) \times 10^{-10}$$
$$BR(K_{L} \to \pi^{0} \nu \overline{\nu}) = (0.34 \pm 0.05) \times 10^{-10} \left(\frac{|V_{ub}|}{0.00388}\right)^{2} \left(\frac{|V_{cb}|}{0.0407}\right)^{2} \left(\frac{\sin \gamma}{\sin 73.2^{\circ}}\right)^{2} = (0.34 \pm 0.06) \times 10^{-10}$$

Kaons and the CKM unitarity triangle

■ The CKM unitarity triangle can be constrained by kaon physics alone

Comparison with B physics can provide description of NP flavour dynamics

$K^+ \rightarrow \pi^+ v \overline{v}$ beyond the Standard Model

- High sensitivity to NP (non MFV): significant variations wrt SM possible
- Correlations between rare FCNCs in the kaon and B sectors sensitive to NP flavour structure
 - ☆ Correlations model dependent
 - ★ Precise measurement of rare FCNCs can help distinguish between possible NP models!

Kaon physics @ NA62

The CERN accelerator complex Complexe des accélérateurs du CERN

▶ H⁻ (hydrogen anions) ▶ p (protons) ▶ ions ▶ RIBs (Radioactive Ion Beams) ▶ n (neutrons) ▶ p (antiprotons) ▶ e (electrons)

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE - Radioactive EXperiment/High Intensity and Energy ISOLDE // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator // n_TOF - Neutrons Time Of Flight // HiRadMat - High-Radiation to Materials NA62 timeline Dec 2008: NA62 Approval 2009 – 2014: Detector R&D and installation 2015: Commissioning 2016 – 2018: NA62 Run 1 2021 – 2023: NA62 Run2

NA62 primary goal: measurement of the ultra rare kaon decay $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

NA62 consists of ~ 200 participants from: Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna, Fairfax, Ferrara, Firenze, Frascati, Glasgow, Lancaster, Liverpool, Louvain, Mainz, Moskow, Naples, Perugia, Pisa, Prague, Protvino, Rome I, Rome II, San Luis Potosi, Turin, TRIUMF, Vancouver UBC

Keystones of the analysis

- Kinematic suppression ~ O(104)
- Timing between sub-detectors ~ O(100 ps)
- Muon suppression > 10⁷
- π^0 suppression (from K⁺ $\rightarrow \pi^+\pi^0$) > 10⁷

- SPS Beam:
 - ★ 400 GeV/c protons
 - ★ 1.9x10¹² protons/spill
 - 🖈 3.5s spill
 - ★ ~10¹⁸ POT/year

- Secondary positive Beam:
 - ★ 75 GeV/c momentum, 1% rms
 - ★ 100 µrad divergence (RMS)
 - ★ 60x30 mm² transverse size
 - ★ **K**⁺(6%)/ π ⁺(70%)/p(24%)
 - ★ 450 MHz of particles at GTK3

Decay Region:

- \star 60 m long fiducial region
- ★ ~ 3 MHz K⁺ decay rate
- ★ Vacuum ~ O(10⁻⁶) mbar

- Upstream detectors (K⁺):
- ★ KTAG: Differential Cherenkov counter for K⁺ ID
- ★ GTK: Si pixel beam tracker
- CHANTI: Anti-counter for
 inelastic beam-GTK3 interactions

- Decay Region detectors (π^+) :
 - **STRAW:** track momentum spectrometer
 - **CHOD:** Scintillator hodoscopes
 - ★ LKr/MUV1/MUV2 : Calorimetric system
 - **RICH:** Cherenkov counter for $\pi/\mu/e$ ID
 - ★ LAV/SAC/IRC: Photon veto detectors
 - * MUV3: Muon veto

Data set and trigger

- L0: presence of a charged particle, photon and muon veto
- L1: kaon identification, photon veto, STRAW track reconstruction
- ★ **"Control":** minimum bias, presence of a charged particle downscaled by 400
- Offline analysis
 - ★ Data samples: **PNN; Control:** K⁺→ $\pi^{+}\pi^{0}$, K⁺→ $\mu^{+}\nu$, K⁺→ $\pi^{+}\pi^{-}$, K⁺→ $\pi^{+}\pi^{-}e^{+}\nu$

1. Selection

- ★ K⁺ decays with a single charged particle in the final state
- **Particle identification:** π^+
- ☆ Photon and multi-charged rejection
- ★ Kinematic selection of signal regions
- 2. Determination of the Single Event Sensitivity (SES)
- 3. Estimation and validation of the expected background
- 4. Opening of the signal regions and results

Signal and background control regions are kept blind throughout the analysis

1. Selection

Kinematic resolution @ $\pi^+\pi^0$ mass peak

π^+ tagging: RICH

RICH calibration

- Mirrors aligned using: laser, tracks reconstructed from straw spectrometer
- ◆ Monitored using e⁺ (~16 hits / e⁺ ring)
- PM's aligned vs KTAG time: ring $\sigma(t)$ ~ 80 ps
- Ring spectrometer track matched comparing ring centre and flight direction

K⁺ tagging: KTAG

- Differential Cherenkov Counter, geometrically aligned with the beam
- ◆ Pressure scan: optimal working point for K⁺
- PM's time alignment and time walk corrections: $\sigma(t) \sim 70$ ps
- ◆ K⁺ signal from at least 5-fold coincidence (>95% efficiency)

K⁺ tracking: GigaTracker

First time

- \diamond 4D track reconstruction using trigger and KTAG as time reference
- ◆ Time offset corrections dependent on Station, Chip, Column, Row of the pixel
- Pixel by pixel time walk corrections ($\sigma(t)$ < 150 ps per station)
- Stations aligned with straw Spectrometer and calibrated using $K^+ \rightarrow \pi^+ \pi^- \pi^-$ decays

LHCb Seminar 24.09.2020

What can we learn from the NA62 experiment? (R. Marchevski)

NA62

K– π association

♦ KTAG – GigaTracker – RICH time matching \rightarrow Kaon decay time (t_{decay})

- ◆ GigaTracker Straw Spectrometer spatial matching (CDA)
- ◆ 3.5% (1.3%) K⁺ mis-tag if K⁺ track (not) present, dependent on beam intensity
- \bullet ~ 75% K⁺ reconstruction and ID efficiency, depends on intensity

Time resolution

Time calibration stability

- Excellent calibration at the processing level in Run 1
- ◆ Stable central value and time resolution
- ◆ Single-detector time resolution ~ 90ps

Selection of kaon decays

- $K \pi$ association
- No activity in CHANTI
- 2018_S1 geometrical constraints
 - ጵ Z vertex 110 165 m
 - ጵ Track slope
 - ☆ Track projection at collimator
- 2018_S2 geometrical constraints
 - ✤ BDT algorithm used
- Momentum 15 45 GeV/c in 2018
 - ★ Analysis divided into 6 5GeV/c-wide categories (if enough statistics)
- Tracks from «upstream»
 - ★ mismatching in GTK
 - \star Decays along the beam line
 - ★ Beam particle interactions in GTK

NA62

LHCb Seminar 24.09.2020

- ◆ Electromagnetic calo (LKr), Hadronic calo (MUV1, 2), scintillator blocks (MUV3)
- ◆ Machine learning approach (BDT) + MUV3 veto
 - Energy deposition + Energy sharing + Shower shape profiles

Particle ID with RICH

- Track driven likelihoods discriminant for $\pi/\mu/e$ separation
- ◆ Particle mass using track momentum
- ◆ Momentum measurement under mass hypothesis (velocity spectrometer)

LHCb Seminar 24.09.2020

Photon and multi-charged rejection

- \diamond Timing coincidence of signals in LKr, LAV, SAV not associated to π^+ and t_{decay}
- Coincidences of signals in LKr and hodoscopes not associated to π^+ , in time with t_{decay}
- ◆ No hits in time in HASC and MUV0 (off-acceptance veto); segments rejection in Straw
- \diamond Typical timing coincidences: ±3 to ±7 ns; energy dependent time cuts in Lkr
- Fraction of surviving $K^+ \rightarrow \pi^+ \pi^0$ (15 45 momentum range) : ~ 2 x 10⁻⁸
- High suppression of $K^+ \rightarrow \pi^+ \pi^-$, $K^+ \rightarrow \pi^+ \pi^- e^+ v_e$

LHCb Seminar 24.09.2020

2018 data after signal selection

2. Single Event Sensitivity (S.E.S.)

• Normalization: $K^+ \rightarrow \pi^+ \pi^0$ from control data

 \diamond Same π⁺νν̄ selection: γ, multi-charged rejection not applied; **m**²_{miss} cuts modified

$$N_{K} = \frac{N_{\pi\pi} \cdot D}{A_{\pi\pi} \cdot BR_{\pi\pi}} \qquad S.E.S. = \frac{1}{N_{K} \sum_{j} \left(A_{\pi\nu\nu}^{j} \cdot \epsilon_{RV}^{j} \epsilon_{trig}^{j}\right)}$$

 N_K $N_{\pi\pi}$ $A_{\pi\pi}$ D = 400

Number of K⁺decays Number of K⁺ $\rightarrow \pi^{+}\pi^{0}$ Normalization acceptance Control-trigger downscaling

 ϵ_{RV} Random veto efficiency ϵ_{trig} Trigger efficiency $A_{\pi\nu\nu}$ Signal acceptancej π^+ momentum bin

Signal acceptance

◆ Significant acceptance improvement after the installation of a new collimator in 2018_S2

- ◆ Region 20-35 GeV/c the most sensitive in both samples
- ◆ Normalization acceptance ~ 7.6% (2018_S1) and 11.8% (2018_S2)

LHCb Seminar 24.09.2020

Trigger efficiency

• Measured on data using $K^+ \rightarrow \pi^+ \pi^0$ selected from control triggers

◆ Losses mainly from L0 , L1 efficiency ~ 0.97

◆ Performance similar in 2018 within 1% (extended to 45 GeV/c)

Random veto

- ♦ Random signal losses due to γ + multi-charged rejection measured with K⁺→μ⁺ν_µ
- $\diamond \epsilon_{RV} \approx 0.66$ independent of $P_{\pi+}$, but depends on instantaneous intensity

♦ No difference between 2018_S1 and 2018_S2

Single event sensitivity 2018

	Error budget S.E.S.
Trigger efficiency	5%
MC acceptance	3.5%
Random Veto	2%
Background(normalization)	0.7%
Instantaneous intensity	0.7%
Total	6.5%

- $K^+ \rightarrow \pi^+ \pi^0$ decay used for normalization
- Cancellation of systematic effects to first order (PID, Detector efficiencies, kaon ID and beam-related acceptance loss)

$S.E.S. = (1.11 \pm 0.07_{syst.}) \times 10^{-11}$

3. Background estimation

Background: $K^+ \rightarrow \pi^+ \pi^0(\gamma)$

Data in $\pi^+\pi^0$ region after $\pi\nu\nu$ selection (including π^0 rejection)

Expected $K^+ \rightarrow \pi^+ \pi^0$ in signal regions after the $\pi \nu \nu$ selection

Fraction of $\pi^+\pi^0$ in signal region measured on control data

- Same procedure used for $K^+ \rightarrow \pi^+\pi^+\pi^$ background estimation
- Radiative K⁺→π⁺π⁰γ decays estimated with MC combined with single photon efficiency measurement on data

Background:
$$K^+ \rightarrow \mu^+ \nu_{\mu}(\gamma)$$

$$N_{\mu\nu}^{bg} = \int_{-1}^{N_{cat}} f_{kin+RICH} \cdot N_{\mu\nu}(\mu\nu) + M_{\mu\nu}^{bg}$$
Number of $\mu\nu$ events in the $\mu\nu$ background region
Kinematic tails x RICH muon rejection

◆ PNN-like K⁺→µ⁺v_µ selection with inverted Calo PID
 ◆ Tails are measured together with the RICH muon rejection applied on data
 ◆ Correlation between kinematics and RICH PID are properly handled in this case

LHCb Seminar 24.09.2020

Control regions: $K^+ \rightarrow \pi^+ \pi^0$, $\mu^+ \nu_{\mu}$ and $\pi^+ \pi^+ \pi^+ \pi^- 62$

Background estimated using MC normalized to SES (2x10° events generated)
 Predictions validated using several control selections orthogonal to the signal
 MC normalized to K⁺→π⁺π⁰ decays

LHCb Seminar 24.09.2020

$K^+ \rightarrow \pi^+ \pi^- e^+ v_e(K_{e4})$ validation

◆ Sensitivity of the validation samples spans 2 orders of magnitude (Acc ~ 10⁻⁶ – 10⁻⁸)

- Samples 3 and 4 of particular importance
 - Sensitivity similar or even lower than the signal

LHCb Seminar 24.09.2020

Upstream background validation

◆ CDA distributions of each validation sample is extracted separately from data

♦ Good agreement across all samples

Sensitivity of the validation samples spans 2 orders of magnitude

LHCb Seminar 24.09.2020

Background summary

	2018 data
Expected SM signal	$7.58(40)_{syst}(75)_{ext}$
$K^{\scriptscriptstyle +} \longrightarrow \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle 0}(\gamma)$	0.75(4)
$K^{\scriptscriptstyle +} \longrightarrow \mu^{\scriptscriptstyle +} \nu(\gamma)$	0.49(5)
$K^{+} \longrightarrow \pi^{+}\pi^{-}e^{+}\nu$	0.50(11)
$K^{\scriptscriptstyle +} \longrightarrow \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -} \pi^{\scriptscriptstyle -}$	0.24(8)
$K^{\scriptscriptstyle +} \longrightarrow \pi^{\scriptscriptstyle +} \gamma \gamma$	< 0.01
$K^{\scriptscriptstyle +} \longrightarrow \pi^0 l^{\scriptscriptstyle +} \nu$	< 0.001
Upstream	$3.30^{+0.98}$
Total background	5.28 ^{+0.99} -0.74

4. Result

2018 data before unblinding

Opening the box in the 2018 data

5.3 background + 7.6 SM signal events expected, 17 events observed

²miss</sub> signal and background (2018 data) **1462**

 \mathbf{m}^2

CERN

Combine with the 2016 and 2017 results A62

- 1 events observed
- Br(K⁺ $\rightarrow \pi^+ \nu \nu$) < 14x10⁻¹⁰ @ 90% CL Phys. Lett. B 791 (2019) 156-166
- 2 events observed
- $Br(K^+ \rightarrow \pi^+ \nu \nu) < 1.78 \times 10^{-10}$ @ 90% CL [arXiv:2007.08218 [hep-ex]](submitted to JHEP)

- Maximum likelihood fit using signal and background expectation in each category
- Two samples with different hardware configurations in 2018
 - ★ 2018_S1 ~ 20% of the 2018 dataset, integrated over momentum
 - ★ 2018_S2 ~ 80% of the 2018 dataset, 5 GeV/c wide bins from 15-45 GeV/c
 - ★ 2016 and 2017 datasets, integrated over momentum added as separate categories

LHCb Seminar 24.09.2020

NA62 Run1(2016 + 2017 + 2018) result: * $Br(K^+ \to \pi^+ \nu \bar{\nu}) = (11.0^{+4.0}_{-3.5 stat.} \pm 0.3_{syst.}) \times 10^{-11}(3.5\sigma \text{ significance})$

$K^+ \rightarrow \pi^+ \nu \nu$ decay: Historical context

Grossman-Nir limit

- A 30% measurement can already shrink significantly the parameter space of some NP models
- In combination with K_L and B physics will be a powerful probe of NP in the near future

LHCb Seminar 24.09.2020

- NA62 result from the complete Run 1(2016 + 2017 + 2018)
 - ★ Observed events: 1 (2016) + 2 (2017) + 17(2018) = 20 (Run 1)
 - ★ Expected background ~ 0.2(2016) + 1.5(2017) + 5.3(2018) = 7 (Run 1)
 - * $Br(K^+ \to \pi^+ \nu \bar{\nu}) = (11.0^{+4.0}_{-3.5\,stat.} \pm 0.3_{syst.}) \times 10^{-11} (3.5\sigma \text{ significance})$
 - \star The most precise measurement of the BR obtained so far
- The result is compatible with the SM prediction within one standard deviation

Towards the 2021 run

- ★ NA62 will resume data-taking in 2021
- ★ Modifications of the NA62 beam line, installation of an additional beam spectrometer station and a veto counter to reduce upstream background
- ★ New calorimeter downstream of MUV and upstream of the beam dump to further suppress kaon decay background
- * More information can be found in the <u>NA62 SPSC addendum</u>

Status of the CKM matrix with kaons

Main players: NA62 (Run 1 Preliminary), LHCb (Run1+2), KOTO (< 2020 data)

$$\begin{split} &K_L \to \pi^0 \nu \bar{\nu}: \text{Sensitivity } \mathcal{O}(10^{-9} \div 10^{-10}) \text{ (KOTO)} \\ &K^+ \to \pi^+ \nu \bar{\nu}: 30\% \text{ measurement (NA62)} \\ &K_S \to \mu^+ \mu^-: \text{Sensitivity } \mathcal{O}(10^{-10}) \text{ (LHCb)} \\ &K_S \to \pi^0 l^+ l^-: 40\% \text{ meas. (NA48/1)} \\ &K_L \to \pi^0 \gamma \gamma: 40\% \text{ meas. (NA48, KTeV)} \\ &K_L \to \gamma \gamma l^+ l^-: 10\% \text{ meas./SM sensitivity } (\mu) \text{ (KTeV)} \\ &K_L \to \gamma \gamma: \text{ precise meas. (NA48, KLOE)} \\ &K_L \to \mu^+ \mu^-, l^+ l^- \gamma: \text{ precise meas. (B871, KTeV, NA48, E799)} \\ &K_L \to l^+ l^- l^+ l^-: \text{ precise meas. (KTeV, NA48)} \end{split}$$

Future (< 2025)

Main players: NA62 (Run 2), LHCb (Upgrade I), KOTO (Step – 1)

possible picture 10^{-8} $\mathbf{B}(\mathbf{K}_{\mathrm{L}} \rightarrow \pi^{0} \sqrt{\mathbf{v}})$ KOTO step-1 (1 SM expected, 1 observed) 90% CL 10^{-10} $K^+ \rightarrow \pi^+ \nu \bar{\nu} \ \sigma(\mathcal{B}) / \mathcal{B} = 10\%$ + $(\mathcal{B} = \mathbf{11} \times \mathbf{10}^{-11})$ SM 10^{-11} 10 15 25 5 30 20 35 $B(K^+ \rightarrow \pi^+ \nu \overline{\nu}) \times 10^{11}$

 $K_{L} \rightarrow \pi^{0} \nu \overline{\nu}: \text{SM Sensitivity (KOTO)}$ $K^{+} \rightarrow \pi^{+} \nu \overline{\nu}: \mathcal{O}(10\%) \text{ measurement (NA62)}$ $K_{S} \rightarrow \mu^{+} \mu^{-}: \text{Sensitivity } \mathcal{O}(10^{-11}) \text{ (LHCb)}$ $K_{S} \rightarrow \pi^{0} l^{+} l^{-}: 20\% \text{ meas. (LHCb, NA48/1)}$ $K_{L} \rightarrow \pi^{0} \gamma \gamma: 40\% \text{ meas. (NA48, KTeV)}$ $K_{L} \rightarrow \gamma \gamma l^{+} l^{-}: 10\% \text{ meas./SM sensitivity } (\mu) \text{ (KTeV)}$ $K_{L} \rightarrow \gamma \gamma: \text{ precise meas. (NA48, KLOE)}$ $K_{L} \rightarrow \mu^{+} \mu^{-}, l^{+} l^{-} \gamma: \text{ precise meas. (B871, KTeV, NA48, E799)}$ $K_{L} \rightarrow l^{+} l^{-} l^{+} l^{-}: \text{ precise meas. (KTeV, NA48)}$

Future (> 2025)

Main players: K facility @ CERN (K+/K⁰, NA62-like, Klever), LHCb (Upgrade II), KOTO (Step – 2)

Final remarks

- Rare kaon FCNCs are among the most sensitive probes of NP at the highest mass scales
- We see very important progress in the last years
 - ★ NA62 reaching the 3σ evidence for K⁺→ $\pi^+\nu\nu$
 - ★ KOTO and LHCb pushing closer to SM sensitivity for $K_L \rightarrow \pi^0 \nu \nu$ and $K_S \rightarrow \mu^+ \mu^-$
- If NP is close we may see first hints in the kaon sector within the next 5-10 years

One of the most interesting decade for kaon physics is ahead of us!!!

Thank You for Your attention!

SPARE

Search for $\pi^0 \rightarrow$ invisible

- A priori evaluation of π^0 suppression of K⁺ $\rightarrow \pi^+\pi^0$ decays (0.015 < m^2_{miss} < 0.021 GeV²/c⁴)
 - ★ Selection and trigger stream identical to $K^+ \rightarrow \pi^+ \nu \nu$ (1/3 of the 2017 data set used)
 - Single-γ detection efficiency from control K⁺ \rightarrow π⁺π⁰ data (Tag & Probe)
 - ★ π^0 suppression evaluated from convolution with MC K⁺→ $\pi^+\pi^0(\gamma)$
 - Validation: side bands with expected rejection O(10⁻⁷) where $\pi^0 \rightarrow$ invisible excluded [E949, PRD72 (2005)]

 π^{0} suppression expected = $(2.8^{+5.9}_{-2.1})$ x10⁻⁹ (π^{+} momentum region 25-40 GeV/c)

$K^+ \rightarrow \pi^+ X$, X invisible

- ◆ Feebly interacting new particles foreseen in several models
 - Axion-like particles (ALPs)
 - ➢ QCD axion, Axiflavon (m~0)
- By-product of the $K^+ \rightarrow \pi^+ \nu \nu$ analysis
 - Same selection, normalization and backgrounds
 - Exception: SM K⁺ $\rightarrow \pi^+ \nu \nu$ decay is a background for this search
- ◆ Peak search with a sliding mass window proportional to the m²_{miss} resolution
 - \triangleright Performed inside the K⁺ $\rightarrow \pi^+ \nu \nu$ signal regions
 - \succ Gaussian shape for X

K⁺ $\rightarrow \pi^+X$, X decaying to SM

- ◆ X can decay to visible particles
- ◆ Comparison between NA62 and the previous best limit [E949 Collaboration, PRD 79 092004]
 - ~ Factor 10 improvement in Region 2
- Prospects with 2018 data: Improvements by ~ factor 2 expected from a dedicated analysis

Degraded sensitivity at small m_x because of resolution effects

LHCb Seminar 24.09.2020