

The Large Neutrino Collider

Pedro Machado **CERN** Theory Colloquium November 16th, 2020

or "Physics opportunities with future liquid argon time project projection chambers"

Fermilab U.S. DEPARTMENT OF Office of Science

What is the goal of the LHC?

11/16/2020 2

- Discover the Higgs?
- **Understand EWSB?**
- Measure Higgs couplings?
- Discover SUSY (or your preferred BSM model)?
 - Probe unexplored energy scales?

Pedro Machado I The Large Neutrino Collider

11/16/2020 3

What is the goal of the LHC?

- In this colloquium I will advocate that the future liquid argon neutrino detectors (e.g. DUNE) will also be multi-purpose, going

much beyond CP violation, mixing angles, proton decay, etc.

Pedro Machado I The Large Neutrino Collider

11/16/2020

Probe unexplored energy scales?

What is the goal of the LHC?

Discover the Higgs?

The nature of neutrinos

Matter-antimatter asymmetry

11/16/2020 5

Pedro Machado I The Large Neutrino Collider

Why neutrinos?

Proton decay

Portal to new physics?

I am part of the DUNE collaboration, but I am *not* speaking on behalf of DUNE. Views here are my own. Mistakes too.

11/16/2020 6

Pedro Machado I The Large Neutrino Collider

Disclaimer

Also, I will not touch DUNE's main goals: measuring CP violation with beam neutrinos, detecting supernova, measuring proton decay, ...

Some key aspects of LArTPCs and the opportunities they provide

11/16/2020

Pedro Machado I The Large Neutrino Collider

Liquid argon time projection chambers

Liquid argon time projection chambers

11/16/2020 8

protons target

9 11/16/2020

11/16/2020 10

11/16/2020 11

Pedro Machado I The Large Neutrino Collider

11/16/2020 12

- Beam: ~ 10^{21} protons on target per year (120 GeV, 1.2 MW)
- Near detector: 67 ton (though this can change), 574 m from target, multi-purpose (more on this later)
 - Far detector: 40 kton fiducial mass, 1300 km from target
 - **DUNE** is a massive, nonstandard beam dump experiment

MINOS event

 $\nu_e CC$

13 11/16/2020

NOvA event

11/16/2020 14

Pedro Machado I The Large Neutrino Collider

https://cdcvs.fnal.gov/redmine/projects/novaart/wiki/Running_the_EventDisplay

NOvA event

15 11/16/2020

Pedro Machado I The Large Neutrino Collider

SK/T2K event

http://www-sk.icrr.u-tokyo.ac.jp/sk/sk/t2k-e.html

NOvA event

16 11/16/2020

Pedro Machado I The Large Neutrino Collider

SK/T2K event

IceCube event

https://icecube.wisc.edu/science

NOvA event

MiniBooNE event

Pedro Machado I The Large Neutrino Collider

17 11/16/2020

SK/T2K event

IceCube event

NOvA event

MiniBooNE event

Liquid scintillator event (e.g. Daya Bay, JUNO, RENO, ...)

18 11/16/2020 Pedro Machado I The Large Neutrino Collider

SK/T2K event

Jinping

Event time Run Event TRG Type(s) TotalPE: MaxPE:	:MC :0 :No Triggen 600.0 5.0
MaxPE: NumHits:	5.0 480

1602.01733

IceCube event

pmachado@fnal.gov

NOvA event

MiniBooNE event

Liquid scintillator event (e.g. Daya Bay, JUNO, RENO, ...)

11/16/2020 19

Pedro Machado I The Large Neutrino Collider

SK/T2K event

IceCube event

LArTPCs

µBooNE

21 11/16/2020

22 11/16/2020

Pedro Machado I The Large Neutrino Collider

Electric Pield

23 11/16/2020

Electric

24 11/16/2020

current time

Electric

25 11/16/2020

current time

Electric

26 11/16/2020

27 11/16/2020

11/16/2020 28

(2) Topological capability

30 11/16/2020 Pedro Machado I The Large Neutrino Collider

LArIAT 1911.10379

31 11/16/2020 Pedro Machado I The Large Neutrino Collider

LArIAT 1911.10379

Muons:

 $\mu^+ \rightarrow e^+ v_{\mu}$ $\mu^- p^+ \rightarrow \overline{v}_{\mu} + n$

Pions:

 $\pi^+ n \rightarrow \pi^0 p^+$ $\pi^- p^+ \rightarrow \pi^0 n$

Topology depends on particle and its charge

τ lifetime of is too short for DUNE ($c\tau = 87\mu m$ versus mm wire distance) *v*-mode

32 11/16/2020

Pedro Machado I The Large Neutrino Collider

Based on M Schulz Turner 2007.00015 see also Albright Shrock 1979 NOMAD hep-ex/0106102 Hagiwara et al hep-ph/0408212 Aoki et al hep-ph/0503050 Conrad et al 1008.2984

Decay mode	Branching ratio
Leptonic	35.2%
$e^- ar{ u}_e u_ au$	17.8%
$\mu^- ar{ u}_\mu u_ au$	17.4%
Hadronic	64.8%
$\pi^{-}\pi^{0} u_{ au}$	25.5%
$\pi^- u_ au$	10.8%
$\pi^-\pi^0\pi^0 u_ au$	9.3%
$\pi^-\pi^-\pi^+ u_ au$	9.0%
$\pi^-\pi^-\pi^+\pi^0 u_ au$	4.5%
other	5.7%

τ lifetime of is too short for DUNE (c τ = 87µm versus mm wire distance) ν -mode

33 11/16/2020 Pedro Machado I The Large Neutrino Collider

Based on M Schulz Turner 2007.00015 see also Albright Shrock 1979 NOMAD hep-ex/0106102 Hagiwara et al hep-ph/0408212 Aoki et al hep-ph/0503050 Conrad et al 1008.2984

Hadronic tau background (all neutrinos contribute!)

 τ lifetime of is too short for DUNE (c τ = 87µm versus mm wire distance)

34 11/16/2020

Pedro Machado I The Large Neutrino Collider

Based on M Schulz Turner 2007.00015 see also Albright Shrock 1979 NOMAD hep-ex/0106102 Hagiwara et al hep-ph/0408212 Aoki et al hep-ph/0503050 Conrad et al 1008.2984

Perform a cut and count analysis taking into account

- 1. Number of leptons
- 2. Number of pions
- 3. Energy of leading pion
- 4. Total visible energy
- Missing p_T 5.
- 6. Number of jets

τ lifetime of is too short for DUNE ($c\tau = 87\mu m$ versus mm wire distance)

35 11/16/2020

Pedro Machado I The Large Neutrino Collider

Based on M Schulz Turner

Perform a cut and count analysis taking into account

- 1. Number of leptons
- 2. Number of pions
- 3. Energy of leading pion
- 4. Total visible energy
- 5. Missing p_T
- 6. Number of jets

Albright NOMAD he Hagiwara et al he Aoki et al he Conrad et

2007.00015
see also
t Shrock 1979
p-ex/0106102
p-ph/0408212
p-ph/0503050
t al 1008.2984

()		1	(

(3) Very low energy threshold

ArgoNeuT demonstrated the LAr capability to detect 21 MeV recoil protons.

36 11/16/2020

ArgoNeuT demonstrated the LAr capability to detect 21 MeV recoil protons.

37 11/16/2020

Pedro Machado I The Large Neutrino Collider

Reconstruct, identify and point.

For comparison, SK can only see protons that emit Cherenkov light, that is, protons with kinetic energy above ~ 1.4 GeV

ArgoNeuT demonstrated the LAr capability to detect 21 MeV recoil protons. ArgoNeuT 1810.06502

11/16/2020

Reconstructing neutrino energy and direction for sub-GeV atmospheric neutrinos is also 10x harder...

40 11/16/2020

Pedro Machado I The Large Neutrino Collider

Based on Kelly et al 1904.02751

DUNE

Sub-GeV atmospheric neutrinos could provide the only measurement of CP violation which is independent of beam neutrino uncertainties and driven by the solar mass splitting.

11/16/2020 41

Pedro Machado I The Large Neutrino Collider

Based on Kelly et al 1904.02751

Sub-GeV atmospheric neutrinos could also provide quantum tomography measurement of Earth's core

42 11/16/2020

Pedro Machado I The Large Neutrino Collider

Based on Kelly et al

 _	_		_	_		_	
 Ω	Ω	Λ	Π	C	7		1
J	U	4.	U			J	
 _	_		<u> </u>		-	<u> </u>	_

Crust Mantle Outer Core

Inner Core

Sub-GeV atmospheric neutrinos could also provide quantum tomography measurement of Earth's core

11/16/2020 43

Pedro Machado I The Large Neutrino Collider

Based on Kelly et al

 _	_		_	_		_	
 Ω	Ω	Λ	Π	C	7		-
J	U	4.	U			J	
 _	_		<u> </u>		-	<u> </u>	_

Crust Mantle

ArgoNeuT also demonstrated the LAr capability to detect sub-MeV depositions (blips)

11/16/2020 44

Pedro Machado I The Large Neutrino Collider

No particle identification, no track, just a blip

What can be done with it?

Pedro Machado I The Large Neutrino Collider

11/16/2020 45

- All electric charges, in the SM, are multiples of the down quark charge Q(down quarks) = -1/3 Q(up quarks) = +2/3 $Q(e,\mu,\tau) = -1$
 - Are there particles with tiny charges?
 - "Dark electromagnetism" typically leads to millicharged particles

 $\mathcal{L}_{mix} = \frac{\epsilon}{L} \mathcal{B}_{mv} F''$

(c) Millicharged particles

R. Harnik, Zhen Liu, and O. Palamara, arXiv:1902.03246

46 11/16/2020

(c) Millicharged particles

R. Harnik, Zhen Liu, and O. Palamara, arXiv:1902.03246

Neutrino Collider

PHYSICAL REVIEW LETTERS 124, 131801 (2020)

Improved Limits on Millicharged Particles Using the ArgoNeuT Experiment at Fermilab

R. Acciarri,¹ C. Adams,² J. Asaadi,³ B. Baller,¹ T. Bolton,⁴ C. Bromberg,⁵ F. Cavanna,¹ D. Edmunds,⁵ R. S. Fitzpatrick,⁶
B. Fleming,⁷ R. Harnik,¹ C. James,¹ I. Lepetic,^{8,*} B. R. Littlejohn,⁸ Z. Liu,⁹ X. Luo,¹⁰ O. Palamara,^{1,†}
G. Scanavini,⁷ M. Soderberg,¹¹ J. Spitz,⁶ A. M. Szelc,¹² W. Wu,¹ and T. Yang¹

(ArgoNeuT Collaboration)

(c) Millicharged particles

R. Harnik, Zhen Liu, and O. Palamara, arXiv:1902.03246 detector signal target background detector target 100 10-1 80 60 40 10^{-2} 20 Ψ ۲ (m) -2010⁻³ -60-80 10^{-4} –100<u>⊏-</u> –10 10¹ -2 -8 -6 -4 2 0 6 8 10 4 Neutrino Col X (m)

PHYSICAL REVIEW LETTERS 124, 131801 (2020)

Improved Limits on Millicharged Particles Using the ArgoNeuT Experiment at Fermilab

R. Acciarri,¹ C. Adams,² J. Asaadi,³ B. Baller,¹ T. Bolton,⁴ C. Bromberg,⁵ F. Cavanna,¹ D. Edmunds,⁵ R. S. Fitzpatrick,⁶ B. Fleming,⁷ R. Harnik,¹ C. James,¹ I. Lepetic,^{8,*} B. R. Littlejohn,⁸ Z. Liu,⁹ X. Luo,¹⁰ O. Palamara,^{1,†} G. Scanavini,⁷ M. Soderberg,¹¹ J. Spitz,⁶ A. M. Szelc,¹² W. Wu,¹ and T. Yang¹

(ArgoNeuT Collaboration)

Pedro Machado I The Large Neutrino Collider

(4) Multi-purpose near detector complex

(4) Multi-purpose near detector complex

DUNE 2002.03005

(4) Multi-purpose near detector complex

Pedro Machado I The Large Neutrino Collider

(d) Weak mixing angle measurements

Pedro Machado I The Large Neutrino Collider

(d) Weak mixing angle measurements

Pedro Machado I The Large Neutrino Collider

(d) Weak mixing angle measurements

pmachado@fnal.gov

(d) Weak mixing angle measurements

55 11/16/2020

11/16/2020 56

Pedro Machado I The Large Neutrino Collider

57 11/16/2020

Pedro Machado I The Large Neutrino Collider

11/16/2020 58

Pedro Machado I The Large Neutrino Collider

11/16/2020 59

Pedro Machado I The Large Neutrino Collider

Pedro Machado I The Large Neutrino Collider

11/16/2020 60

- New capabilities will make SBN and DUNE multi-purpose physics programs, but will also require
 - several areas of expertise: neutrino physics, nuclear physics, lattice, QCD, BSM, DM, ...

Large flux, large detectors

3D reconstruction and calorimetry

Low energy thresholds

Multi-purpose near detector complex

61

11/16/2020 Pedro Machado I The Large Neutrino Collider

Tau neutrino reconstruction Sub-GeV atm neutrinos: CPV/tomography Millicharged particles Weak mixing angle

Axion searches

New capabilities lead to novel opportunities

Large flux, large detectors

3D reconstruction and calorimetry

Low energy thresholds

Multi-purpose near detector complex

Electron-photon separation

Angular resolution

Light collection system

11/16/2020 62

Pedro Machado I The Large Neutrino Collider

. . . .

Tau neutrino reconstruction Sub-GeV atm neutrinos: CPV/tomography Millicharged particles Weak mixing angle Axion searches Neutrino tridents Mass hierarchy from atm neutrinos Solar neutrinos Supernova neutrinos Neutron-antineutron oscillations Heavy neutral leptons **Neutrino Portal** + all standard BSM + ...

New capabilities lead to novel opportunities

3DST

11/16/2020 63

Pedro Machado I The Large Neutrino Collider

- TH and EXP developments
- TH+EXP collaboration

Exciting times ahead!!!

Heavy neutral leptons

Neutrino Portal

+ all standard BSM + ...

New capabilities lead to novel opportunities

3DST

64 11/16/2020

Pedro Machado I The Large Neutrino Collider

- TH and EXP developments
- TH+EXP collaboration

Exciting times ahead!!! Thank you

Heavy neutral leptons

Neutrino Portal

+ all standard BSM + ...

