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Introduction

LHC:
● High precision
● Single purpose

PSB:
● Rugged
● Multi purpose
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Introduction

Ring 4

Ring 2

Ring 1

Ring 3
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● The PSB was designed as an intensity booster for the 
PS

● Fine precision was less of a priority than delivering high 
intensity beams and increasing PS injection energy

● Since then, increased precision and control has been 
required, especially in the LHC era

● To meet the needs of the HL-LHC, significant upgrades 
were required

Introduction

A Little History
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Most significant changes from the longitudinal perspective:
● Finemet RF cavities:

More flexibility thanks to large bandwidth, but also stronger interactions 
with the beam, feedback loops help to suppress the interaction

● Linac4:
Higher injection energy and bunch-to-bucket injection, longitudinal 
painting in the long term

● POPS-B:
Higher extraction energy and increased ramp rate

Introduction

Changes During LS2
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Introduction

Before and After
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Controlled Longitudinal Emittance 
Blow-up
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Controlled Longitudinal Emittance 
Blow-Up

● Controlled longitudinal emittance blow-up is needed for three main reasons:
1)  Provide controlled and reproducible longitudinal distribution

2)  Increase stability threshold in the PSB

3)  Reduce space charge effects on the PS flat bottom

● Pre-LS2, a dedicated high harmonic RF system was used with single tone 
modulation

● Post-LS2, band limited phase noise will be used for almost all operational 
beams

● Blow-up with phase noise is more easily optimised and requires fewer 
parameters to be controlled than single tone modulation of a high harmonic
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Controlled Longitudinal Emittance Blow-Up

Synchrotron Motion

● Particles in the bucket 
undergo synchrotron 
oscillations

● The frequency of the 
oscillations is the 
synchrotron frequency

● Particles nearer the 
separatrix have a lower 
synchrotron frequency 
than particles nearer the 
center
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Large amplitude 
low frequency

Small amplitude 
high frequency

Controlled Longitudinal Emittance Blow-Up

Synchrotron Motion
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Controlled Longitudinal Emittance Blow-Up

Synchrotron Frequency Distribution

● The distribution of 
frequencies within the 
bucket can be calculated as 
a function of longitudinal 
emittance

● The RF phase should be 
modulated uniformly within 
the defined frequency range
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Controlled Longitudinal Emittance Blow-Up

Noise Band

● The distribution of 
frequencies within the 
bucket can be calculated as 
a function of longitudinal 
emittance

● The RF phase should be 
modulated uniformly within 
the defined frequency range
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● During acceleration, the 
synchrotron frequency 
distribution changes a 
lot and very quickly

● The noise program 
needs to follow the 
changing distribution to 
excite the correct 
particles

Controlled Longitudinal Emittance Blow-Up

Time Variation of Noise Band
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Controlled Longitudinal Emittance Blow-Up

Time Variation of Noise Band

● During acceleration, the 
synchrotron frequency 
distribution changes a 
lot and very quickly

● The noise program 
needs to follow the 
changing distribution to 
excite the correct 
particles
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● Summing a very 
large number of 
waveforms creates a 
noise program

● As each contribution 
is smoothly varying, 
so is the final noise 
program

Controlled Longitudinal Emittance Blow-Up

Smoothly Varying Noise Program
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Controlled Longitudinal Emittance Blow-Up

Application of Phase Noise
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● Phase noise is used operationally in the SPS and LHC for 
controlled longitudinal emittance blow-up

● PSB phase noise proof-of-principle by D. Quartullo in 2017 
(CERN-THESIS-2019-006)

● A new method of calculating noise was developed for the 
2018 reliability run in the PSB

● All operational beams, with the exception of LHC single 
bunch beams, will use phase noise post-LS2

Controlled Longitudinal Emittance 
Blow-Up
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Longitudinal Instability
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Longitudinal Instability
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● Simulation by A. Farricker of 
the impedance of the new 
extraction kicker

● As protons pass through a 
trailing field is left behind, 
which will be seen by others

● Interactions between 
protons and the 
environment can lead to 
instability

Longitudinal Instability

Wakefield



27

● From injection to 
extraction, the 
revolution frequency 
changes by about a 
factor of 2

● With the changing 
revolution frequency 
the impedance also 
changes

Longitudinal Instability

Impedance Model
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● Finemet cavities are the 
dominant impedance 
source and are able to 
trigger microwave 
instability

● Due to the changing β 
during acceleration, 
different revolution 
harmonics sweep 
through the large 
impedance peak during 
the cycle
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● Two almost identical 
bunches at flat top, 
only the longitudinal 
distribution is different

● Binomial distribution 
with μ = 0.3 (blue) and 
μ = 1 (red)

Longitudinal Instability

Bunch Distribution
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Longitudinal Instability

Bunch Distribution

● Two almost identical 
bunches at flat top, 
only the longitudinal 
distribution is different

● Binomial distribution 
with μ = 0.3 (blue) and 
μ = 1 (red)
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● For a coasting beam, the 
region of stability can be 
calculated for different values 
of μ

● For microwave instability this 
is a good approximation for 
bunched beams

● If the impedance fits in the 
white region, the beam should 
be stable otherwise it may go 
unstable

Longitudinal Instability

Coasting Beam Approximation
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(Approaching) 
Gaussian

Longitudinal Instability

Coasting Beam Approximation

● For a coasting beam, the 
region of stability can be 
calculated for different values 
of μ

● For microwave instability this 
is a good approximation for 
bunched beams

● If the impedance fits in the 
white region, the beam should 
be stable otherwise it may go 
unstable
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Longitudinal Instability

Comparison With Tracking

● Intensity threshold as a 
function of μ at flat top

● Maximum stable intensity 
predicted at μ = 0.4 for a 
coasting beam

● Tracking simulations in 
BLonD with a bunched 
beam and fixed matched 
area show good 
agreement



34

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.2

0.4

0.6

0.8

1.0

1.2

1.4

In
te

n
si

ty
 (

×
1

0
1

3
)

BLonD Simulation

Analytical (scaled)

HL-LHC25

TOF

AD

Longitudinal Instability

Comparison With Tracking

● Intensity threshold as a 
function of μ at flat top

● Maximum stable intensity 
predicted at μ = 0.4 for a 
coasting beam

● Tracking simulations in 
BLonD with a bunched 
beam and fixed matched 
area show good 
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● Longitudinal distribution 
and intensity are not the 
only factors in stability

● Adjusting the RF voltage 
and harmonics can act 
to raise or lower the 
stability threshold

● Large energy spread is 
preferable

10 kV at h=1, 0 kV at h=2

6 kV h=1, 4 kV h=2, Bunch Lengthening

6 kV h=1, 4 kV h=2, Bunch Shortening

Longitudinal Instability

Effect of RF Harmonics and Voltages
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● Longitudinal distribution 
and intensity are not the 
only factors in stability

● Adjusting the RF voltage 
and harmonics can act 
to raise or lower the 
stability threshold

● Large energy spread is 
preferable

10 kV at h=1, 0 kV at h=2

5 kV h=1, 4 kV h=2, Bunch Lengthening

5 kV h=1, 4 kV h=2, Bunch Shortening

Longitudinal Instability

Effect of RF Harmonics and Voltages
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Longitudinal Instability
● Beam interactions with the environment can cause the 

beam to become unstable, leading to uncontrolled 
emittance blow-up and/or beam loss

● The impedance of the Finemet cavities is the dominant 
contribution to the impedance, and can trigger 
microwave instability

● Careful tuning of the longitudinal distribution and 
choosing the right voltage settings is necessary for 
stability at high intensity
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Operational Beam Production
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● Two magnetic 
cycles

● 1.4 GeV kinetic 
energy to 
ISOLDE

● 2 GeV kinetic 
energy to the PS

Operational Beam Production

Magnetic Cycles
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Operational Beam Production

Challenging Cycle Types

● ISOLDE:
High intensity, medium emittance, 1.4 GeV

● HL-LHC25:

Low intensity, large emittance, 2 GeV

● MTE:

Medium intensity, large emittance then splitting, 2 GeV

● TOF:

High intensity, medium emittance, 2 GeV
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Injection on the Ramp
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Frequency 
from B-Field

RF 
Frequency

● Pre-LS2, injection on the 
ramp was used to reduce the 
impact of space charge by 
increasing β as quickly as 
possible

● Injecting on the ramp was 
originally planned for post-
LS2

● During injection the RF 
frequency is fixed, and then 
returns to the frequency 
derived from the magnetic 
field afterwards

Injection on the Ramp

RF Frequency
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Injection on the Ramp

RF Frequency Following Magnetic Field
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Injection on the Ramp

RF Frequency Fixed
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Kinetic energy 
from B-Field

True kinetic 
energy

● The kinetic energy of 
the circulating beam is  
determined by a 
combination of the RF 
frequency and 
magnetic field

Injection on the Ramp

Kinetic Energy Calculation
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Energy gain 
without considering 

RF frequency

True energy 
gain

Injection on the Ramp

Acceleration

● The kinetic energy of 
the circulating beam is  
determined by a 
combination of the RF 
frequency and 
magnetic field

● Fixed RF frequency 
with increasing 
magnetic field causes 
a small deceleration
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Injection on the Ramp

Longitudinal Phase Space Tomography

● Unusual beam dynamics were 
shown by S. Hancock in 2016
(CERN-ACC-NOTE-2016-0040)
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Injection on the Ramp

Longitudinal Phase Space Tomography

● Unusual beam dynamics were 
shown by S. Hancock in 2016
(CERN-ACC-NOTE-2016-0040)

● Inputting a deceleration into the 
tomoscope allowed an accurate 
reconstruction of the distribution 
injected from Linac2
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Injection on the Ramp

Return to B-Train
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Injection on the Ramp

Separatrix
Expectation

Reality

Start of injection During return to B-Train
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Large initial 
acceptance

Minimum 
acceptance 
during return 
to design 
frequency

Injection on the Ramp

Longitudinal Acceptance
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● During injection the 
magnetic field is 
increasing, so the relative 
energy difference between 
the PSB and Linac4 
increases

● As each ring starts injecting 
there will be an increasing 
energy difference between 
the design energy and the 
injection energy
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● During injection the 
magnetic field is 
increasing, so the relative 
energy difference between 
the PSB and Linac4 
increases

● As each ring starts injecting 
there will be an increasing 
energy difference between 
the design energy and the 
injection energy
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injection energy
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Injection on the Ramp

Energy Offset Compensation

● Special dipole “Bdl” 
trim circuits will offset 
the magnetic field at 
the start of injection to 
each ring
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● Special dipole “Bdl” 
trim circuits will offset 
the magnetic field at 
the start of injection to 
each ring

● With the trim field 
added, every ring will 
have the same energy 
offset relative to 
Linac4 during injection
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● The beam dynamics of injection on the ramp is complex
● Pre-LS2, a coasting beam was injected and captured, therefore 

an accurate description of the beam dynamics was less important
● Injecting directly into the bucket with Linac4, and preserving the 

beam quality, will require very accurate knowledge of the beam 
dynamics

● Due to the complexity of injecting on the ramp (not just 
longitudinally) we will restart with a flat bottom, and investigate 
injection on the ramp as an optimisation later

Injection On The Ramp
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Longitudinal Painting
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● Longitudinal painting will allow very 
precise and uniform filling of the 
bucket, giving higher quality beams

● First described by C. Carli and 
R. Garoby in 2008
(AB-Note-2008-011 ABP)

● Linac4 mean energy is modulated 
to the limits of a target contour

● The chopping factor is modulated 
to match the length of the contour 
at that energy

Longitudinal Painting

Principle



83

Longitudinal Painting

Principle
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● Line of test particles 
placed along the 
middle of the bucket
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Synchrotron Motion
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● Line of test particles 
placed along the 
middle of the bucket

● Track for 150 turns 
(maximum duration of 
injection)

Longitudinal Painting

Synchrotron Motion
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● Line of test particles 
placed along the 
middle of the bucket

● Track for 150 turns 
(maximum duration of 
injection)

● Significant synchrotron 
motion despite short 
time
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● 150 turns injected

● Every 7th injection 
shown

● Tracking disabled

Longitudinal Painting

Synchrotron Motion
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● 150 turns injected

● Every 7th injection 
shown

● Tracking enabled

Longitudinal Painting

Synchrotron Motion
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Longitudinal Painting

Synchrotron Motion
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● The real beam has 
an energy spread

● The beam will not 
match the target if 
the spread isn’t 
considered

● Significant beam 
loss may occur

Longitudinal Painting

Tracking
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● The chopping pattern 
should be designed 
with the energy 
spread included

● A smaller energy 
modulation is needed 
to avoid wasting 
beam

Longitudinal Painting

Effect of Linac4 Energy Spread
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Longitudinal Painting

Tracking 2
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Conclusion
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Conclusion
● RF phase noise will be used for controlled longitudinal emittance blow-up 

for most operational beams, with a new method for calculating the function
● Microwave instability driven by the impedance of the Finemet cavities is 

expected at high intensities, with a strong threshold dependence on the 
longitudinal distribution

● Voltage functions have been designed for each operational cycle, which 
take full advantage of the flexibility of the new Finemet RF systems and 
meet the beam dynamics constraints

● Post-LS2 the PSB will restart with injection on a flat-bottom, with injection 
on the ramp to be studied as an optimisation in the future

● In the long term, longitudinal painting has the potential to further improve 
beam performance and will be studied in more detail
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