## The $t\bar{t}$ Total Cross Section at Hadron Colliders at NNLL

Sebastian Klein

in collaboration with M. Beneke, P. Falgari and C. Schwinn





Sebastian Klein

HP2.3rd, Florence

16.09.2010

## 1. Introduction

• We consider the inclusive cross section of pair production of top quarks at the LHC (near) threshold

$$ij(q\overline{q}, qg, gg) \to t\overline{t} + X$$
$$\sigma_{t\overline{t}}(m_t, s) = \int_{4m_t^2/s}^1 dx \mathcal{L}(x, \mu) \hat{\sigma}_{t\overline{t}}(xs, m_t, \mu)$$
$$\beta = \sqrt{1 - 4m_t^2/(xs)}$$

• With the rediscovery of the top quark at the LHC, precision studies of its properties will be performed

 $\implies$  Accurate theoretical prediction of the cross section phenomenologically important and currently of much interest.

• Top is expected to couple strongly with the fields responsible for electroweak symmetry breaking  $\implies$  likely to play a key role in new discoveries.

- Partonic cross section known exactly to NLO.
   [Nason, Dawson and Ellis, 1988; Beenakker, Kuijf, van Neerven and Smith, 1989; Czakon and Mitov, 2008.]
- Enhancement of partonic cross section near threshold  $\beta \to 0$

$$\begin{aligned} \hat{\sigma}_{t\overline{t}} &= \hat{\sigma}_{t\overline{t}}^{(0)} \Big[ 1 + \frac{\alpha_s}{4\pi} \Big( \hat{\sigma}_{t\overline{t}}^{\text{NLO}_{\text{sing}}} + O(\beta^0) \Big) + \Big( \frac{\alpha_s}{4\pi} \Big)^2 \Big( \hat{\sigma}_{t\overline{t}}^{\text{NNLO}_{\text{sing}}} + O(\beta^0) \Big) + \dots \Big] , \\ \hat{\sigma}_{t\overline{t}}^{\text{NLO}_{\text{sing}}} &= \underbrace{a \ln^2 \beta + b \ln \beta}_{\text{``Threshold logarithms''}} + \underbrace{\frac{c}{\beta}}_{\text{``Coulomb singularity''}} , \\ \hat{\sigma}_{t\overline{t}}^{\text{NNLO}_{\text{sing}}} &= \hat{\sigma}_{t\overline{t}}^{\text{NNLO}_{\text{sing}}} \Big( \frac{1}{\beta^2}; \frac{\ln^{(0,1,2)}(\beta)}{\beta}; \ln^{(1,2,3,4)}(\beta) \Big) . \end{aligned}$$

[Beneke, Czakon, Falgari, Mitov and Schwinn, 2009.]

• Threshold logarithms:

soft gluon exchange between initial-initial, initial-final and final-final state particles. Resummation in Mellin-space e.g. by [Sterman, 1987;Catani, Trentadue, 1989; Kidonakis, Sterman, 1997;Bonciani et.al., 1998;...]

• Coulomb corrections:

static interactions of slowly moving particles [Fadin, Khoze 1987; Strassler, 1990; NRQCD; ...]

- Enhanced terms can spoil convergence of perturbative series  $\implies$  Resummation
  - Generally observed to reduce dependence on factorization scale.
  - Allows to predict classes of higher order corrections
  - Accelerated convergence of perturbative series
- Recent applications
  - total top quark cross section [Moch,Uwer, 2008; Cacciari et. al., 2008; Kidonakis, Vogt, 2008.]
  - $-t\overline{t}$  invariant mass distribution [Kiyo, Kühn, Moch, Steinhauser, Uwer, 2009; Ahrens, Ferroglia, Neubert, Yang, 2009/10.]
  - squark, gluino production [Kulesza, Motyka 2008/09; Langenfeld, Moch, 2009; Beenakker et.al.
     2009/10; Beneke, Falgari, Schwinn, 2010.]
  - Bound-state effects on kinematical distributions of top quarks at hadron colliders [Sumino, Yokoya, 2010.]
- Key idea: factorization into hard, soft and Coulomb functions  $\implies$  joint NNLL resummation of soft and Coulomb gluons.
- Effective-theory prediction of pair production near threshold [Beneke, Falgari, Schwinn 2009/10.] using **SCET**+ **P(NRQCD)**: valid for arbitrary color representations.

• Parametric representation of the partonic cross section near threshold:

$$\hat{\sigma}_{t\overline{t}} \propto \hat{\sigma}_{t\overline{t}}^{(0)} \sum_{k=0}^{\infty} \left(\frac{\alpha_s}{\beta}\right)^k \exp\left[\underbrace{\ln\beta g_0(\alpha_s \ln\beta)}_{(\text{LL})} + \underbrace{\ln\beta g_1(\alpha_s \ln\beta)}_{(\text{NLL})} + \alpha_s \underbrace{\ln\beta g_2(\alpha_s \ln\beta)}_{(\text{NNLL})}\right] \times \left\{1(\text{LL}, \text{NLL}); \alpha_s, \beta(\text{NNLL}); \alpha_s^2, \alpha_s \beta, \beta^2(\text{NNNLL}); \dots \right\}.$$

- Counting:  $\alpha_s/\beta, \alpha_s \ln \beta \propto 1.$
- Fixed order expansion contains all terms of the form

LL: 
$$\alpha_s \left\{ \frac{1}{\beta}, \ln^2 \beta \right\}; \alpha_s^2 \left\{ \frac{1}{\beta^2}, \frac{\ln^2 \beta}{\beta}, \ln^4 \beta \right\}; \dots,$$
  
NLL:  $\alpha_s \ln \beta; \alpha_s^2 \left\{ \frac{\ln \beta}{\beta}, \ln^3 \beta \right\}; \dots,$   
NNLL:  $\alpha_s \{1, \beta \ln^{2,1} \beta\}; \alpha_s^2 \left\{ \frac{1}{\beta}, \ln^{2,1} \beta, \beta \ln^{4,3} \beta \right\}; \dots,$ 

• Non–relativistic log summation must be added separately - relevant from NNLL.

### Why threshold expansion

- Strictly valid for high masses  $2m_t \rightarrow s_{had}$ .
- Certainly not for tops at LHC7. Invariant mass distribution peaks at 380 GeV, corresponding to  $\beta \approx 0.4$ , but the average  $\beta$  is larger.
- Assume that threshold expansion provides a good approximation for the integrals over all  $\beta$ . Works reasonably well for gg at LO and NLO, less well for  $q\overline{q}$  and probably better at NNLO, because the average is dominated by smaller  $\beta$  as the order increases.
- multiplying with the exact tree  $\hat{\sigma}_{t\overline{t}}^{(0)}$  improves the approximation.



|                                           | Tev. | LHC7  | LHC14 |  |  |
|-------------------------------------------|------|-------|-------|--|--|
| $\langle \beta \rangle_{gg,\mathrm{NLO}}$ | 0.41 | 0.49  | 0.53  |  |  |
| LO                                        | 5.25 | 101.9 | 562.9 |  |  |
| NLO                                       | 6.50 | 149.9 | 842.2 |  |  |
| $\mathrm{NLO}_{\mathrm{sing}}$            | 6.76 | 138.8 | 751.2 |  |  |
| $\mathrm{NLO}_{\mathrm{approx}}$          | 7.45 | 159.0 | 867.6 |  |  |
| MSTW2008nnlo PDFs.                        |      |       |       |  |  |

## 2. NNLL Resummation

• Apply NNLL soft resummation and coulomb resummation to total cross section

$$\hat{\sigma}_{t\overline{t}}^{\text{NNLL}} = \sum_{i,R_{\alpha}} H_i(m_t,\mu_h) U_i(m_t,\mu_h,\mu_S,\mu_f) \left(\frac{2m_t}{\mu_S}\right)^{-2\eta} \tilde{s}_i^{R_{\alpha}}(\partial_{\eta},\mu_S) \\ \times \frac{\exp(-2\gamma_E \eta)}{\Gamma(2\eta)} \int_0^\infty \frac{dw}{w} \left(\frac{w}{\mu_S}\right)^{2\eta} J_{R_{\alpha}}(E-\frac{w}{2},\mu_C) , (E=\sqrt{xs}-m_t) .$$

- Different contributions:
  - Hard function  $H_i$  depends on the specific process, evaluated at hard scale  $\mu_h$ .
  - Process-independent soft function  $W_i^{R_{\alpha}}(\propto \alpha_s^n \ln^m \beta)$  translates via a Laplace transform into  $\tilde{s}_i^{R_{\alpha}}(\partial_{\eta}, \mu_S)$ . Evaluated at soft scale  $\mu_S$ .
  - $U_i$  evolution function from solving the RG equations of the hard and soft functions. (for DY:[Becher, Neubert,Xu, 2007.].)
  - Potential function  $J_{R_{\alpha}}$  encodes Coulomb effects, evaluated at Coulomb–scale  $\mu_C$ .
- Formula valid except for non-Coulomb corrections at  $O(\alpha_s^2)$ , which are added separately.
- New:
  - full LO and NLO Coulomb effects to all orders, above and below threshold.
  - full NNLL soft resummation (Note: full NNLL soft resummation for invariant mass distribution in [Ahrens, Ferroglia, Neubert, Yang, 2010.]).

#### Hard and Soft Function

- NLL needs  $H_i$  at tree level, NNLL needs  $H_i$  at NLO. Known from [Czakon, Mitov, 2008].
- NNLL needs soft function at NLO. It is given by

$$\tilde{s}^{R_{\alpha}}(\rho,\mu_{S}) = 1 + \frac{\alpha_{s}(\mu_{S})}{4\pi} \Big[ (C_{r} + C_{r'}) \Big(\rho^{2} + \zeta_{2}\Big) - 2C_{R_{\alpha}}(\rho - 2) \Big] .$$

• The evolution function is given by

$$U_{i}(M,\mu_{h},\mu_{f},\mu_{s}) = \left(\frac{4m_{t}^{2}}{\mu_{h}^{2}}\right)^{-2a_{\Gamma}(\mu_{h},\mu_{S})} \left(\frac{\mu_{h}^{2}}{\mu_{S}^{2}}\right)^{\eta} \times \exp\left[4(S(\mu_{h},\mu_{f}) - S(\mu_{S},\mu_{f})) - 2a_{i}^{V}(\mu_{h},\mu_{S}) + 2a^{\phi,r}(\mu_{S},\mu_{f}) + 2a^{\phi,r'}(\mu_{S},\mu_{f})\right],$$

where  $a(\mu_1, \mu_2), S(\mu_1, \mu_2)$  denote integrated anomalous dimensions.

• Resummation controlled by cusp and soft anomalous dimensions  $\Gamma_{\text{cusp}}^r, \gamma_i^V, \gamma^r, \gamma_{H,s}^{R_{\alpha}}$ .

#### Coulomb effects

• For NNLL:  $J_{R_{\alpha}}$  needed at NLO. Resummation of Coulomb effects well understood from PNRQCD and quarkonia physics. The LO Coulomb function reads

$$J_{R_{\alpha}} = -\frac{m_{t}^{2}}{2\pi} \operatorname{Im}\left(\sqrt{-\frac{E}{m_{t}}} - D_{R_{\alpha}}\alpha_{s} \left[\frac{1}{2}\ln\left(-\frac{4m_{t}E}{\mu^{2}}\right) - \frac{1}{2} + \gamma_{E} + \psi\left(1 + \frac{D_{R_{\alpha}}\alpha_{s}}{2\sqrt{-E/m_{t}}}\right)\right]\right)$$

• Above threshold, E > 0, the potential function evaluates to the Sommerfeldt factor

$$J_{R_{\alpha}} = \frac{1}{2} \frac{m_t^2 D_{R_{\alpha}} \alpha_s}{\exp\left(\pi D_{R_{\alpha}} \alpha_s \sqrt{m_t/E}\right) - 1}$$

• For an attractive potential,  $D_{R_{\alpha}} < 0$ , there is a sum of bound states below threshold:

$$J_{R_{\alpha}} = -2\sum_{n=1}^{\infty} \left(\frac{m_t D_{R_{\alpha}} \alpha_s}{2n}\right)^n \delta(E+E_n) , E_n = \frac{m_t \alpha_s^2 D_{R_{\alpha}}^2}{4n^2}$$

(see also:[Fadin, Kohze 1987; Kiyo et.al. 2009; Hagiwara, Yokoya 2009].)

• Non–Coulomb corrections can be derived from the non–Coulomb potential

$$\hat{\sigma}_{t\bar{t}}^{\mathrm{NC}} = \hat{\sigma}_{t\bar{t}}^{(0)} \alpha_s^2 \ln \beta \left[ -2D_{R_{\alpha}} (1 + v_{\mathrm{spin}}) + D_{R_{\alpha}} C_A \right]$$

[Beneke, Signer, Smirnov 1999; Pineda, Signer, 2006; Beneke, Czakon, Falgari, Mitov, Schwinn, 2009.].

#### Scale Choice

- We use  $m_t = 173.1 \text{ GeV}$  and set  $\mu_f = \mu_R = m_t$ .
- Identify hard scale and factorization scale:  $\mu_h \propto \mu_f$ .  $\implies$  No large logs of the hard scale  $(\ln(\mu_h/\mu_f))$ .
- The form of the approximate NLO corrections implies that μ<sub>S</sub> ≈ 8m<sub>t</sub>β<sup>2</sup>. However, this choice might lead to an ill-defined convolution with the parton luminosity
  [Becher, Neubert, Pecjak, 2007; Becher, Neubert, Xu, 2008.]
  ⇒ Choose μ<sub>S</sub> such that one-loop corrections to the hadronic cross section are minimized. This guarantees well-behaved perturbative expansion at the low scale μ<sub>S</sub>.
- The choice  $\mu_C \propto m_t \beta$  is required to sum correctly all NNLL terms. Additionally, the relevant scale for the bound state effects is set by the inverse Bohr radius of the  $t\bar{t}$  bound state and we set

$$\mu_C = \max\{2m_t\beta, C_Fm_t\alpha_S(\mu_C)\}.$$

• Note: only the choice  $\mu_S \propto m_t \beta^2$ ,  $\mu_C \propto m_t \beta$  reproduces correctly the threshold expansion in  $\beta$ 

## **3. Preliminary Results**

• We match the resummed cross section onto the full NLO result [Zerwas et.al., 1996; Langenfeld, Moch, 2009.]

$$\hat{\sigma}_{t\overline{t}}^{\text{approx}} \propto \hat{\sigma}_{t\overline{t}}^{\text{N(N)LL}} - \hat{\sigma}_{t\overline{t}}^{\text{N(N)LL}} \Big|_{\alpha_s^{1,2}} + \hat{\sigma}_{t\overline{t}}^{\text{NLO}} \ .$$

• For NLL resummation, we previously considered

$$\begin{array}{lll} \hat{\sigma}_{t\overline{t}}^{\rm NNLO_{approx}} & = & \hat{\sigma}_{t\overline{t}}^{\rm NLO} + \hat{\sigma}_{t\overline{t}}^{\rm NNLO_{sing}} \ , \\ \\ \hat{\sigma}_{t\overline{t}}^{\rm NNLO_{approx} + \rm NLL} & = & \hat{\sigma}_{t\overline{t}}^{\rm NLL} - \hat{\sigma}_{t\overline{t}}^{\rm NLL} \Big|_{\alpha_{c}^{2}} + \hat{\sigma}_{t\overline{t}}^{\rm NNLO_{approx}} \end{array}$$

(Note:  $\hat{\sigma}_{t\overline{t}}^{\text{NC}}$  included in  $\hat{\sigma}_{t\overline{t}}^{\text{NNLO}_{\text{sing}}}$ .)

• A natural choice for NNLL resummation would be

$$\hat{\sigma}_{t\overline{t}}^{\text{NNLL}(\alpha_{\text{s}})} = \hat{\sigma}_{t\overline{t}}^{\text{NNLL}} - \hat{\sigma}_{t\overline{t}}^{\text{NNLL}} \Big|_{\alpha_{s}} + \hat{\sigma}_{t\overline{t}}^{\text{NC}} + \hat{\sigma}_{t\overline{t}}^{\text{NLO}}$$

• Due to the limitations in choosing the soft scale running, we consider as our best approximation:

$$\hat{\sigma}_{t\overline{t}} \equiv \hat{\sigma}_{t\overline{t}}^{\text{NNLL}(\alpha_{\text{s}}^2)} = \hat{\sigma}_{t\overline{t}}^{\text{NNLL}} - \hat{\sigma}_{t\overline{t}}^{\text{NNLL}} \Big|_{\alpha_{\text{s}}^2} + \hat{\sigma}_{t\overline{t}}^{\text{NNLO}_{\text{approx}}}$$

|                                 |        | Tevatron                                 | LHC7                  | LHC10                   | LHC14                   |
|---------------------------------|--------|------------------------------------------|-----------------------|-------------------------|-------------------------|
|                                 |        |                                          |                       |                         |                         |
| NLO                             | MSTW08 | $6.50^{+0.32+0.33}_{-0.70-0.24}$         | $150^{+18+8}_{-19-8}$ | $380_{-46-17}^{+44+17}$ | $842_{-97-32}^{+97+30}$ |
|                                 | ABKM09 | $6.43^{+0.23}_{-0.61}{}^{+0.15}_{-0.15}$ | $122_{-15-7}^{+13+7}$ | $322_{-38-15}^{+36+15}$ | $738^{+81+27}_{-83-27}$ |
| $NNLO_{approx}$                 | MSTW08 | $7.13^{+0.00+0.36}_{-0.33-0.26}$         | $162^{+3+9}_{-3-9}$   | $407^{+11+17}_{-5-18}$  | $895^{+29+31}_{-7-33}$  |
|                                 | ABKM09 | $7.01^{+0.06+0.18}_{-0.36-0.18}$         | $132^{+2+8}_{-2-8}$   | $345_{-3-16}^{+8+16}$   | $785^{+22+29}_{-6-29}$  |
| $\rm NNLO_{approx}$ + $\rm NLL$ | MSTW08 | $7.13^{+0.08+0.36}_{-0.41-0.26}$         | $162^{+2+9}_{-1-9}$   | $407^{+9+17}_{-2-18}$   | $895^{+23+31}_{-4-33}$  |
|                                 | ABKM09 | $7.00^{+0.13+0.18}_{-0.44-0.18}$         | $132^{+1+8}_{-1-8}$   | $345^{+6+16}_{-1-16}$   | $784^{+17+29}_{-3-29}$  |
| NNLL(New)                       | MSTW08 | $7.14^{+0.13+0.36}_{-0.19-0.26}$         | $162^{+4+9}_{-2-9}$   | $407^{+14+17}_{-4-18}$  | $896^{+36+31}_{-7-33}$  |
|                                 | ABKM09 | $7.00^{+0.14+0.18}_{-0.21-0.18}$         | $132^{+3+8}_{-1-8}$   | $345^{+10+16}_{-3-16}$  | $785^{+27+29}_{-5-29}$  |

#### Using the MSTW2008nnlo and ABKM09 PDF sets, we obtain

- First error denotes scale uncertainty, second PDF error.
- We observe an enhancement of the cross section of 5 10%.
- Using the expanded tree instead of the full tree changes the result only by less than 1%.
- Scale uncertainty significantly reduced.

| • | For $\hat{\sigma}_{t\bar{t}}^{\text{NNLL}(\alpha_{s})}$ , | , we obtain | for the | central | values | (MSTW | 2008nnlo): |
|---|-----------------------------------------------------------|-------------|---------|---------|--------|-------|------------|
|---|-----------------------------------------------------------|-------------|---------|---------|--------|-------|------------|

|                                 | Tevatron | LHC7 | LHC10 | LHC14 |
|---------------------------------|----------|------|-------|-------|
| $\operatorname{NNLL}(\alpha_s)$ | 6.75     | 155  | 392   | 865   |

 $\implies$  Correct description is important. Choose  $\mu_S$  running?

• The NNLL corrections can be split into soft- and Coulomb- corrections. One obtains for LHC@7TeV

$$\begin{split} \sigma_{t\overline{t}}^{\rm NNLL}({\rm LO}_{\rm soft} \times {\rm LO}_{\rm Cb}) &= 166.7 \ {\rm pb} \ , \\ \sigma_{t\overline{t}}^{\rm NNLL}({\rm LO}_{\rm soft} \times {\rm NLO}_{\rm Cb}) &= -0.5 \ {\rm pb} \ , \\ \sigma_{t\overline{t}}^{\rm NNLL}({\rm NLO}_{\rm soft} \times {\rm LO}_{\rm Cb}) &= 29.6 \ {\rm pb} \ , \\ \sigma_{t\overline{t}}^{\rm NNLL}({\rm NLO}_{\rm soft} \times {\rm NLO}_{\rm Cb}) &= -0.8 \ {\rm pb} \ , \end{split}$$

 $\implies$  The soft corrections dominate, as well for the other energies. This can be explained by the observation that the gg-channel is color octet dominated.







#### **Theoretical Uncertainties**

- PDF–error is of the order of 5%.
- Scale–uncertainty is of the order of 1 5%.
- Ambiguity in the resummation prescription: How to choose  $\mu_S$ ? Related: use NNLO singular terms?
- For LHC@7, the central values of the different contributions are given by:

$$\begin{split} \sigma_{t\overline{t}}^{\mathrm{NNLL}} &- \sigma_{t\overline{t}}^{\mathrm{NNLL}} \Big|_{\alpha_s^2} &= 0.1 \text{ pb} , \quad (\sigma_{t\overline{t}}^{\mathrm{BST}} = 0.8 \text{ pb}) , \\ \sigma_{t\overline{t}}^{\mathrm{NNLO}_{\mathrm{sing}}} &= 12.1 \text{ pb} , \quad (\sigma_{t\overline{t}}^{\mathrm{NC}} = 0.5 \text{pb}) . \end{split}$$

 $\implies$  the corrections are mainly dominated by the NNLO–singular terms.

• Estimate the NNLO constant term by comparing the NNLO singular terms to the ratio of the NLO singular and NLO constant term for the average value of  $\langle \beta \rangle \approx 0.4$ :

$$\Delta \hat{\sigma}_{t\overline{t}}^{\rm NNLO_{\rm const}} \approx \pm 10 {\rm pb} \ . \label{eq:delta_const}$$

 $\implies$  Would fit nicely with the  $\hat{\sigma}_{t\overline{t}}^{\text{NNLL}(\alpha_{s})}$ - prescription.

## Comparisons

• [Moch, Uwer, 2008.]:

NLL–resummation in Mellin–space and NNLO–singular terms.

- Different PDFs, NNLO-singular terms
- Agreement on the level of 1% for the singular terms
- [Ahrens, Ferroglia, Neubert, Yang, 2010.]:
  - NNLL resummation of soft threshold logarithms in x-space of the invariant mass distribution

 $\implies$  Coulomb singularities do not appear completely (added "by hand" for comparisons).

- Subtraction terms determined by setting all scales equal in the resummed result.
- Their best result for  $\mu_f = m_t$  tends to be slightly smaller than the exact NLO result, whereas ours is 5% - 10% bigger. Still agreement within the error.

# 4. Conclusions

- First joint NNLL threshold resummation of soft and Coulomb gluons, including non-Coulomb effects, for  $t\bar{t}$  production at hadron colliders.
- We presented first preliminary results and observe an enhancement of the total cross section of 5 10%.
- Significant reduction of the scale dependence.
- In our current implementation, the effect compared to NLL resummation is negligible due to the choice of the soft scale  $\mu_S$ .
- Work in progress: correct treatment of  $\mu_S$ .