Precise Higgs boson masses in the MSSM

Matthias Steinhauser

KIT

September 2010, HP2.3rd, Florence

in collaboration with Robert Harlander, Philipp Kant, Luminita Mihaila

Outline

- Motivation
- M_h to 3 loops
- Conclusions

Why many loops (for the MSSM)?

Higgs boson mass in the MSSM

- MSSM: 5 Higgs bosons: h, H, A, H^{\pm}
- \checkmark prediction of M_h
- tree-level:

$$\mathcal{M}_{H,tree}^2 = \frac{\sin 2\beta}{2} \begin{pmatrix} M_Z^2 \cot \beta + M_A^2 \tan \beta & -M_Z^2 - M_A^2 \\ -M_Z^2 - M_A^2 & M_Z^2 \tan \beta + M_A^2 \cot \beta \end{pmatrix}$$
$$\Rightarrow M_h \le M_Z$$

 \square quantum corrections:

$$\mathcal{M}_{H}^{2} = \mathcal{M}_{H,tree}^{2} + \begin{pmatrix} \Sigma_{\phi_{1}} & \Sigma_{\phi_{1}\phi_{2}} \\ \hat{\Sigma}_{\phi_{1}\phi_{2}} & \hat{\Sigma}_{\phi_{2}} \end{pmatrix}$$
squark

Higgs boson mass in the MSSM (2)

- expected precision: LHC: $\delta M_h \sim 0.1 - 0.2 \text{ GeV}$ ILC: $\delta M_h \sim 0.050 \text{ GeV}$
- uncertainty based on 2-loop calculations: 3-5 GeV

[Degrassi et al.'03; Allanach et al.'04]

Known results

[Ellis,Ridolfi,Zwirner'91; Okada,Yamaguchi,Yanagida'91; Haber,Hempfling'91]

[...many authors ..., Haber et al.'97; Degrassi, Slavich, Zwirner'01; Allanach et al.'04; Heinemeyer'06;

Frank et al.'06; Martin'03]

[Martin'07]

[Frank,Hahn,Heinemeyer,Hollik,Rzehak,Weiglein]

[Lee,Pilaftsis,Carena,Choi,Drees,Ellis,Wagner]

remaining uncertainty: 3-5 GeV
 2-3 GeV from (unknown) 3-loop result

[Degrassi et al.'03; Allanach et al.'04]

[Kant,Harlander,Mihaila,Steinhauser'08'10]

🗩 FeynHiggs

• $\Delta M_h^{(1)}$: • $\Delta M_h^{(2)}$:

CPSuperH

Framework

- \mathfrak{s} $g, \tilde{g}, t, \tilde{t}, q, \tilde{q}, c, \epsilon;$ mass scales: $m_t, m_{\tilde{t}1}, m_{\tilde{t}2}, m_{\tilde{g}}, m_{\tilde{q}}$
- **DRED**; $\overline{\mathrm{DR}}$ renormalization
- $\hat{\Sigma}(q=0)$, leading contribution: $\sim G_F m_t^4 \alpha_s^2$
- consider hierarchies + asymptotic expansion

 $m_{\tilde{q}} \approx m_{\tilde{t}_{1}} \approx m_{\tilde{t}_{2}} \approx m_{\tilde{g}}$ $m_{\tilde{q}} \gg m_{\tilde{t}_{1}} \approx m_{\tilde{t}_{2}} \approx m_{\tilde{g}}$ $m_{\tilde{q}} \gg m_{\tilde{t}_{2}} \gg m_{\tilde{t}_{1}} \approx m_{\tilde{g}}$ $m_{\tilde{q}} \gg m_{\tilde{t}_{2}} \approx m_{\tilde{g}} \gg m_{\tilde{t}_{1}}$ $m_{\tilde{q}} \approx m_{\tilde{t}_{2}} \approx m_{\tilde{g}} \gg m_{\tilde{t}_{1}}$ $m_{\tilde{q}} \approx m_{\tilde{t}_{2}} \approx m_{\tilde{g}} \gg m_{\tilde{t}_{1}}$

- \checkmark \sim 30 000 diagrams and up to \sim $100\,000$ subdiagrams
- **automated set-up** (generation, asymptotic expansion, vacuum integrals):
 ggraf [Nogueira'91], g2e/exp [Harlander, Seidelsticker, Steinhauser'97'99], MATAD

[Steinhauser'96-'00]

[Siegel'79]

2 loops: complete vs. m_t^4 approximation

2 loops, m_t^4 : exact vs. approximation

2 loops, m_t^4 : exact vs. approximation

msugra: $\tan \beta = 10$, $A_0 = 0$, $\mu_{SUSY} > 0$, 60 GeV < $m_0 < 1600$ GeV, 100 GeV < $m_{1/2} < 800$ GeV

3 loops: check expansion

3 loops: check expansion

 $[M_h^{(3),\mathrm{cut}}$: cut 1 term from expansion]

3 loops: results

Uncertainties:

theory		parametric		
$\Delta^{\operatorname{rem}} M_h^{(3)}$:	100 MeV	$\delta M_t = 1.3 \text{ GeV}$	$\leq 350 \dots 1000 \text{ MeV}$	
approx. for $\Delta^{m_t^4} M_h^{(3)}$:	100 MeV	$(m_{1/2})$	$= 100 \dots 1000 \text{ GeV}$)	
h.o. ($\Delta M_h^{(3)}pprox -rac{1}{2}\Delta M_h^{(2)}$):	$100 \dots 1000 \text{ MeV}$	$\delta lpha_s = 0.0020~{ m GeV}$	$\leq 80 \dots 600 \text{ MeV}$	
$q^2 eq 0$, ew, \dots	200 MeV	SUSY parameters	few 100 MeV	
	δ (theory) $\approx \delta$ (param.)		

M_h to 3 loops

3-loop corrections \approx few GeV \gg 100 MeV \approx exp. uncertainty

Comparison: OS – \overline{DR}

Comparison: $OS - \overline{DR}$

Comparison: OS – \overline{DR}

Renormalization scale dependence

SPS1a

SPS at 2 and 3 loops

	$M_h^{(2)}$	$M_h^{(2),\mathrm{appr}}$	$M_h^{(3)}$	$M_h^{(3),\mathrm{cut}}$	optimal
	(GeV)	(GeV)	(GeV)	(GeV)	hierarchy
SPS1a	111.81	111.84	112.46	112.45	h6b
SPS1a'	113.26	113.27	113.92	113.92	h6b
SPS1b	115.53	115.64	116.49	116.44	h3
SPS2	115.65	115.77	116.67	116.61	h5
SPS3	114.63	114.77	115.59	115.52	h3
SPS4	113.73	113.77	114.82	114.81	h6
SPS5	111.66	111.83	112.02	111.92	h3
SPS7	112.20	112.21	113.04	113.04	h3
SPS8	114.19	114.20	115.03	115.02	h3

H3m

[exact 2-loop m_t^4 expression from [Degrassi, Slavich, Zwirner'01]; OS- $\overline{\text{DR}}$ for M_t from [Martin'05]]

Summary

 Higgs boson mass in the MSSM to 3 loops

•
$$\Delta M_h^{(3 \text{loops})} > \Delta M_h^{(\text{LHC,ILC})}$$

• H3m: most precise value for M_h

www-ttp.particle.uni-karlsruhe.de/Progdata/ttp10/ttp10-23/

• $\delta M_h < 1 \, \mathrm{GeV}$

