NNLO Antenna Subtraction withOne Hadronic Initial State

Gionata Luisoni

In collaboration with A. Daleo, A. Gehrmann-De Ridder and T. Gehrmann

luisonig@physik.uzh.ch

Institut für theoretische Physik,

Universität Zürich.

15.09.2010

HP2.3rd

The 3rd International Workshop on High Precision for Hard Processes at the LHC

Motivation:

- Tevatron and LHC: machines for QCD precision physics€ ⇒ new discovery potential related to how good we understand
□ what we already know
- For precise predictions we need ^a precise determination of ∙
	- coupling constants
	- parton distributions
	- quark masses
	- ...
- Need higher order calculations: NLO, NNLO ... ∙

Subtraction at NLO

For an m-jet cross section, need to integrate numerical<mark>l</mark>y over € phase space:

LO:

 \bullet

Problem: same divergent structure as virtual part but summationoccur only after phase space integration

Subtraction at NLO

For an m-jet cross section, need to integrate numerical<mark>l</mark>y over ◢ phase space:

Solution: Introduce subtraction term which reproduces σ_N^R NLO $\rm _O$ in all singular limits, and can be integrated analytically

[Z. Kunszt, D. Soper]

Subtraction at NLO

For an m-jet cross section, need to integrate numerical<mark>l</mark>y over phase space:

Solution: Introduce subtraction term which reproduces σ_N^R NLO $\rm _O$ in all singular limits, and can be integrated analytically

[Z. Kunszt, D. Soper]

Different subtraction methods exists: dipole, FKS, antenna,...

Somogy, Z. Trocsanyi, D. Kosower, J. Campbell, M. Cullen, N. Glover; A. Daleo, A. Gehrmann-De Ridder, T. Gehrmann, D. Maître]

NLO Antenna Subtraction

 $\mathrm{d}\sigma$

NLO

How is $\mathrm{d}\sigma_\mathrm{N}^S$ $_{\rm O}$ constructed within the antenna frame work? ∙ NLOIt must satisfy: soft & collinear limit $\, R \,$ S

Real correction $\mathrm{d}\sigma_\mathrm{N}^R$ NLO $_{\bigcirc}$ given by

$$
{\rm d}\sigma _{\rm NLO}^R = {\cal N}\sum_{m+1}{\rm d}\Phi _{m+1} \frac{1}{S_{m+1}}{\big|{\cal M}_{m+1}^0\big|^2}J_m^{(m+1)}\left(k_1,\ldots,k_{m+1}\right)
$$

 \longrightarrow d σ

NLO

Exploit factorization of <mark>phase space</mark> and <mark>matrix element</mark> in soft and coll. limit:

$$
- d\Phi_{m+1}(\ldots,i,j,k,\ldots) \stackrel{j \text{ unresolved}}{\longrightarrow} d\Phi_m(\ldots,I,K,\ldots) d\Phi_{X_{ijk}}(i,j,k,I,K)
$$

 $\big|\mathcal{M}^0_n\big|$ $_{m+1}^{0}\left(\ldots,i,j,k,\ldots\right) \rvert$ I 2 $\begin{CD} \mathbf{2} \,\, j \stackrel{\text{unresolved}}{\longrightarrow} \,\, \big| \mathcal{M}^0_n \end{CD}$ $m\,$ $_{m}^{0}\left(\ldots,I,K,\ldots\right) \big|$ I 2 $\overset{\mathtt{a}}{F}(i,j,k)+$ regular terms $F\left({i,j,k} \right)$: soft eikonal factor or collinear splitting function,

 I,K : remapped on-shell momenta: $i+j+k=I+K.$

NLO Antenna Subtraction

And thus $\mathrm{d}\sigma_\mathrm{N}^S$ \bullet $_{\rm O}$ can be constructed as: NLO

$$
d\sigma_{\rm NLO}^{S} = \mathcal{N} \sum_{m+1} d\Phi_{m+1} \frac{1}{S_{m+1}} \sum_{j} X_{ijk}^{0} |\mathcal{M}_{m}|^{2} J_{m}^{(m)} (k_{1}, \ldots, k_{m+1})
$$

where
$$
X_{ijk} \xrightarrow{j \text{ unresolved}} F(i, j, k)
$$
.

Pictorially:

NLO antenna subtraction

NLO antenna function $X^0_{\bm{i}^{\, \bm{i}^{\, \bm{j}}}}$ ┚ $_{ijk}^{\mathrm{U}}$ contains all soft and collinear configuration of parton j emitted between two hard color-connected partons i and k

$$
X_{ijk}^0 = S_{ijk,IK} \frac{\left|M_{ijk}^0\right|^2}{\left|M_{IK}^0\right|^2} \qquad , \qquad \mathrm{d}\Phi_{X_{ijk}^0} = \frac{\mathrm{d}\Phi_3}{P_2}
$$

Antennae computed from matrix elements of physical processes

Integrated subtraction term can be computed analytically

$$
\left| M_m \right|^2 J_m^{(m)} \text{d}\Phi_m \int \text{d}\Phi_{X_{ijk}^0 X_{ijk}^0} \, \propto \, \left| M_m \right|^2 J_m^{(m)} \text{d}\Phi_m \int \text{d}\Phi_3 \left| M_{ijk}^0 \right|^2
$$

Hadronic initial state

\bullet Cross section for hadronic initial state: $(pp, p\bar p)$

$$
d\sigma = \sum_{h_1, h_2, a, b} \int_0^1 \frac{d\xi_1}{\xi_1} \frac{d\xi_1}{\xi_2} f_a^{h_1}(\xi_1, \mu_F^2) f_b^{h_2}(\xi_2, \mu_F^2) d\hat{\sigma}_{ab}(\xi_1 P_1, \xi_2 P_2, \mu_F^2)
$$

Hadronic initial state

\bullet Cross section for hadronic initial state: $\it (ep)$

$$
d\sigma = \sum_{h_1, a, b} \int_0^1 \frac{d\xi_1}{\xi_1} \frac{d\xi_1}{\xi_2} f_a^{h_1} (\xi_1, \mu_F^2) \delta (1 - \xi_2) d\hat{\sigma}_{ab} (\xi_1 P_1, \xi_2 P_2, \mu_F^2)
$$

Hadronic initial state

 $\sf{Applied~to~e^+e^-\ }\rightarrow$ $\sf{3~jets~at~NNLO}$ [A. Gehrmann De-Ridder, T. Gehrmann, N. Glover, G. Heinrich; S. Weinzierl]

initial-final:◢

Sufficient for DIS (2+1)-jet [A. Daleo, T. Gehrmann, D. Maître; A. Daleo, A. Gehrmann-De Ridder, T. Gehrmann, G. L]

initial-initial:

Needed for vector boson plus jet production

n [A. Daleo, T. Gehrmann, D. Maître]
[R. Boughezal, A. Gehrmann-De Ridder, M. Ritzmann]

HP2.3rd 2010, Firenze – p. 8/26

m-jet cross section

n-parton contribution to the m-jet cross section $(p=\xi_1P_1,\,r=\xi_2P_2)$:

$$
d\hat{\sigma}_{ab}^{i}(p,r) = \mathcal{N} \sum_{n} d\Phi_{n}(k_{1},\ldots,k_{n};p,r) \frac{1}{S_{n}} |\mathcal{M}_{n}(k_{1},\ldots,k_{n};p,r)|^{2} J_{m}^{(n)}(k_{1},\ldots,k_{n})
$$

$$
O \quad \text{LO:} \qquad n = m
$$

$$
\bullet \quad \text{NLO:} \quad n = m+1
$$

$$
P \quad \text{NNLO:} \quad n = m+2
$$

Subtraction term for initial-final singularity: €

$$
d\hat{\sigma}^{S(if)} = \mathcal{N} \sum_{m+1} d\Phi_{m+1} (k_1, \dots, k_{m+1}; p, r) \frac{1}{S_{m+1}}
$$

$$
\times \sum_{j} X_{i,jk}^0 |\mathcal{M}_m (k_1, \dots, k_{m+1}; xp, r)|^2 J_m^{(m)} (k_1, \dots, k_{m+1})
$$

HP2.3rd 2010, Firenze – p. 9/26

I-F NLO phase space factorization

Kinematics is now: $q+p\,\rightarrow\,k_{j}+k_{k}\;\;\Rightarrow\;\;\;q+xp\,\rightarrow\,K_{K}$ €

Phase space factorization for $m+1$ particles: ◢

 $\mathrm{d}\Phi_{m+1}(k_1,\ldots,k_{m+1};p,r)=\mathrm{d}\Phi_{m}(k_1,\ldots,K_K,\ldots,k_{m+1};xp,r)\times\frac{Q}{2^N}$ 2 $\frac{Q^2}{2\pi}\mathrm{d}\Phi_2(k_j,k_k;p,q)\frac{\mathrm{d}}{\mathrm{d}k}$ $\mathcal {x}$ $x\$

I-F NLO matrix element factorization

Obtain antennae functions by crossing final-final NLO antennae£

$$
\sum_{m+1} d\Phi_{m+1} |M_{m+1}|^2 J_m^{(m+1)} \longrightarrow \sum_{m+1} d\Phi_m |M_m|^2 J_m^{(m)} \sum_j \frac{Q^2}{2\pi} d\Phi_2 \frac{dx}{x} X_{i,jk}^0
$$

Again integrated subtraction term can be computed analytically: \mathcal{X}^0_\cdot $j_{i,jk}^{\mathbf{U}}\left(x\right) =% {\displaystyle\sum\limits_{i,j,k}^{\mathbf{U}}\left(y_{i}\right) -1}V_{i,j,k}\left(y_{i}^{\mathbf{U}}\right) , \label{eq-qt:conjugation}%$ 1 $\frac{1}{C\left(\epsilon\right)}\int$ \emph{d} Φ_2 $\,Q\,$ 2 2π X^0_\cdot $\sum_{i,j,k}^{0}$, $C\left(\epsilon\right) = \left(4\pi\right)$ $\pi)$ ϵ e $-\epsilon\gamma_E$ $8\pi^2$

[A. Daleo, T. Gehrmann, D. Maître]

HP2.3rd 2010, Firenze – p. 11/26

NLO integrated subtraction term

Integrated subtraction term has to be convoluted with PDFs

Make change of variable and obtain

$$
d\sigma^{S(if)}(p,r) = \sum_{m+1} \sum_{j} \frac{S_m}{S_{m+1}} \int \frac{d\xi_1}{\xi_1} \int \frac{d\xi_2}{\xi_2} \int_{\xi_1}^{1} \frac{dx}{x} f_a^{h_1} \left(\frac{\xi_1}{x}\right) f_b^{h_2}(\xi_2)
$$

$$
\times C(\epsilon) \mathcal{X}_{i,jk}^0(x) d\hat{\sigma}^B(\xi_1 P_1, \xi_2 P_2)
$$

Mass factorization can be carried out

Phase space integration in ${\rm d}\hat{\sigma}^B$ and convolutions can be done numerically

Subtraction at NNLO

Structure of NNLO m-jet cross section€

$$
d\sigma_{NNLO} = \int_{d\Phi_{m+2}} \left(d\sigma_{NNLO}^{R} - d\sigma_{NNLO}^{S} \right) + \int_{d\Phi_{m+2}} d\sigma_{NNLO}^{S}
$$

+
$$
\int_{d\Phi_{m+1}} \left(d\sigma_{NNLO}^{V,1} - d\sigma_{NNLO}^{VS,1} \right) + \int_{d\Phi_{m+1}} \left(d\sigma_{NNLO}^{VS,1} + d\sigma_{NNLO}^{MF,1} \right)
$$

+
$$
\int_{d\Phi_{m}} \left(d\sigma_{NNLO}^{V,2} + d\sigma_{NNLO}^{MF,2} \right).
$$

- $\mathrm{d}\sigma_{\Sigma}^{S}$ $_{\rm NNLO}^S$: real radiation subtraction term for $d\sigma_{\rm N}^R$ NNLO,
- ${\rm d}\sigma_{\scriptscriptstyle \rm NIMI}^{VS,1}$ $_{\rm NNLO}^{VS,1}$: one loop real subtraction term for $d\sigma_{NN}^{V,1}$ $NNLO$ '
- ${\rm d}\sigma_{\rm min}^{V,2}$ $_{\rm NNLO}^{\rm v,z}$: two loop virtual corrections,
- ${\rm d}\sigma^{MF,i}_{\mathrm{NNLO}}$: mass factorization counter terms (i=1,2).

Each column is numerically finite and free of IR $\epsilon\text{-poles}$

I-F NNLO: double real radiation

Obtain antennae functions by crossing final-final NNLO antennae€

Phase space factorization similar to NLO, with one particle more £

$$
d\Phi_{m+2}(k_1,...,k_j,k_k,k_l,...,k_{m+2};p,r) =
$$

$$
d\Phi_m(k_1,...,K_L,...,k_{m+2};xp,r)\frac{Q^2}{2\pi}d\Phi_{X_{i,jkl}}(k_j,k_k,k_l,p,q)\frac{dx}{x}
$$

Again integrated subtraction term can be computed analytically

2 \rightarrow 3 particle phase space

I-F NNLO: one-loop real radiation

Single unresolved limit of 1-loop amplitude:

$$
Loop_{m+1}
$$
^{j unresolved} Split_{tree} × $Loop_m + Split_{loop} \times Tree_m$

[Z. Bern, L.D. Dixon, D. Dunbar, D. Kosower; S. Catani, M. Grazzini; D. Kosower, P. Uwer] [Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt] [Z. Bern, L.D. Dixon, D. Kosower; S. Badger, E.W.N. Glover]

Thus:
$$
X_{i,jk}^1 = S_{i,jk;I,K} \frac{|\mathcal{M}_{i,jk}^1|^2}{|\mathcal{M}_{I,K}^0|^2} - X_{i,jk}^0 \frac{|\mathcal{M}_{I,K}^1|^2}{|\mathcal{M}_{I,K}^0|^2}
$$

£

HP2.3rd 2010, Firenze – p. 15/26

Initial-final antenna functions

 \bullet

Integrated antenna computation

- Reduce phase space integrals to master integrals┚
- Integration over inclusive 2- or 3-particle phase space usingdifferential equations in q 2 and $x=-\frac{q}{2}$ 2 $\frac{1}{2\,p\!\cdot\!q}$
- Boundary condition from explicit computation at $x=1$ ▲
- 9 real and 6 virtual masters:

Computation of master integrals

- Masters computed using differential equations€
- Example: $(d = 4)$ $- \, 2\epsilon)$ ◢

 $\left\{ \right\}$

$$
\begin{cases}\nx \frac{\partial I[2]}{\partial x} = -\frac{d-4}{2} I[2] + \frac{3d-8}{2} \left(1 + \frac{1}{x-1} \right) \frac{I[0]}{Q^2} \\
Q^2 \frac{\partial I[2]}{\partial Q^2} = (d-4) I[2] \implies I[2] \propto (Q^2)^{-2\epsilon}\n\end{cases}
$$

- boundary condition from explicit computation at $x=1$
- putting all together:

 $I[2] =$ 2 $-7+4\epsilon$ $\pi^{3-2\epsilon}$ $\Gamma(1)$ $\epsilon)$ 3 $\Gamma(3-3\epsilon)$ $\Gamma(2-2\epsilon)$ 3 \in 2 $\frac{1}{1-2\epsilon}(1$ $-|x)$ 1− 2ϵ x $^{\epsilon}(Q^2$ $\left(\begin{array}{c} 2 \ 1 \end{array} \right)$ $\frac{2\epsilon}{2}$ ${}_2F_1(1$ $-$ 2 $\epsilon,1$ ϵ , 2 $-$ 2 $\epsilon,1$ $-|x)$

- For simple masters exact result in $\epsilon\to$ expanded with HypExp
□ □ □ € [T. Huber, D. Maître]
- For the others expansion up to needed power of ϵ

Check with DIS structure functions

- Completed full set of integrated $2\,\rightarrow\,3$ tree-level and $2\,\rightarrow\,2$ € one-loop antennae
- Cross check with NNLO DIS structure functions
	- DIS cross section for photon exchange

$$
\frac{d^2\sigma}{dx\,dy} = \frac{2\pi\alpha^2}{Q^4}s\left[\left(1+(1-y)^2\right)F_2(x,Q^2) - y^2F_L(x,Q^2)\right]
$$

- Checks ${\cal A},\, {\cal B}$ and ${\cal C}$ type antenna functions \bullet
- At NLO (before mass factorization)

$$
\frac{1}{C_f} \left(F_{2,q}^{(1)} - \frac{d-1}{d-2} F_{L,q}^{(1)} \right) = 4 \mathcal{A}_{q, gq}^{0} + 8 \delta \left(1 - z \right) F_{q}^{(1)}
$$
\n
$$
\frac{1}{d-2} \left(F_{2,g}^{(1)} - \frac{d-1}{d-2} F_{L,g}^{(1)} \right) = -4 \mathcal{A}_{q, q\bar{q}}^{0}
$$

Check with DIS structure functions

- Completed full set of integrated $2\,\rightarrow\,3$ tree-level and $2\,\rightarrow\,2$ € one-loop antennae
- Cross check with NNLO DIS structure functions
	- DIS cross section for photon exchange

$$
\frac{d^2\sigma}{dx\,dy} = \frac{2\pi\alpha^2}{Q^4}s\left[\left(1+(1-y)^2\right)F_2(x,Q^2) - y^2F_L(x,Q^2)\right]
$$

- Checks ${\cal A},\, {\cal B}$ and ${\cal C}$ type antenna functions
- At NLO (before mass factorization)

Check with φ**-DIS structure functions**

- Structure functions for ^a scalar particle coupling only to gluons€
- Permits to check integrated $\mathcal{F},\,\mathcal{G}$ and $\mathcal{H}\textrm{-type}$ antenna functions ▲
	- DIS cross section for scalar exchange has only one structurefunction: $T_{\phi,i}$, for $i=q,g$

Some example

$$
T_{\phi,g}^{(1)} = 2N \mathcal{F}_{g,gg}^{0} + 2n_{f} \mathcal{G}_{g,q\bar{q}} + 4 \delta (1-z) F_{g}^{(1)}
$$

$$
\frac{1}{C_{f} (1 - \epsilon)} T_{\phi,q}^{(1)} = -4N \mathcal{G}_{q,qg}^{0}
$$

$$
T_{\phi,g}^{(2)}\Big|_{N^{2}} = \mathcal{F}_{g,ggg}^{0} + 4\mathcal{F}_{g,gg}^{1} + \delta (1-z) \left(8F_{g}^{(2)} + 4F_{g}^{(1)} \right)
$$

nar, J. Vermaseren,

Check with φ**-DIS structure functions**

- Structure functions for ^a scalar particle coupling only to gluons
- Permits to check integrated $\mathcal{F},\,\mathcal{G}$ and $\mathcal{H}\textrm{-type}$ antenna functions
	- DIS cross section for scalar exchange has only one structurefunction: $T_{\phi,i}$, for $i=q,g$

Conclusions

Antenna subtraction scheme \bullet

- subtraction method based on collecting all IR and collinearradiation between two pair of color connected hard partons
- final-final case applied successfully at NNLO for $\mathsf{e}^+\mathsf{e}^-\to \mathsf{3}\text{-}\mathsf{jet}$
- all ingredient for initial-final subtraction now available
- cross check of initial-final antennae with DIS structurefunctions is completed
- Potential applications: ∙
	- NNLO DIS (2+1)-jet production
	- contribution to hadron-collider jet production

Outlook:

DIS (2+1)-jet production @ NNLO

Needed for several reasons:

Determination of α_S

DIS 2010, Florence, Italy Jet cross sections in NC DIS at HERA

 ⁶ Dijet cross sections: constraints on pPDFs

 \bullet Gluon fraction and theoretical uncertainties in the phase-space region of the **measurements:**

- \rightarrow PDF uncertainty large in regions of phase space where the gluon fraction is still sizeable **still sizeable**
- \rightarrow high precision dijet data have the potential to constrain further the proton
PDFs when included in the global fits **PDFs when included in the global fits** *zEUS Collab, ZEUS-pub-10-005*

^C Glasman (Universidad Autonoma de Madrid) ´

٠

- Simultaneous fit to all 62 measurements of inclusive, 2- and 3-jet cross sections
- result dominated by theoretical uncertainty, missing higher orders

NNLO calculations needed

Roman Kogler, MPI Munich, DIS 2010

Gluon pdfs

13

Outlook:

DIS (2+1)-jet production @ NNLO

All ingredients present \bullet

real matrix elements,

Zeppenfeld, F. A. Berends, W. Giele, H. Kuijf, N. K. Falck, D. Graudenz, G. Kramer]

mixed real-virtual matrix elements,

[Z. Bern, L. J. Dixon, D. A. Kosower, S. Weinzierl, E. W. N. Glover, D. J. Miller, J. M.Campbell]

two loop matrix elements,

subtraction terms.

[A. Daleo, A. Gehrmann De-Ridder, T. Gehrmann, D. Maître, G. L.]

Next steps: \bullet

implementation of ^a parton level Monte Carlo event generator.

Backup Slides

HP2.3rd 2010, Firenze – p. 24/26

$d\sigma_{\rm \bf \scriptscriptstyle M}^S$ $N_{\rm NLO}$: double real subtraction \rightarrow different configurations

(a) one unresolved parton

(b) two color-connected unresolved partons

(c) two almost color-connected unresolved partons

(d) two color-unconnected unresolved partons

(a): one unresolved parton:

one unresolved parton but the experimental observable selects only m jets, $\;$

three parton antenna function X^0_i $_{i,jk}^{\mathrm{U}}$ can be used (like at NLO)

in De-Ridder, T. Gehrmann, N. Glover

 $d\sigma_{\rm \bf \scriptscriptstyle M}^S$ $_{\text{NNLO}}^S$: double real subtraction \rightarrow different configurations

(a) one unresolved parton

(b) two color-connected unresolved partons

(c) two almost color-connected unresolved partons

(d) two color-unconnected unresolved partons

mann De-Ridder, T. Gehrmann, N. Glover

(b): two color-connected unresolved partons:

i j ^k ^l ^I L

four parton antenna function X^0_i i,jkl

complete set of four parton antennae for i-f configuration is now available

$d\sigma_{\rm \bf \scriptscriptstyle M}^S$ $_{\text{NNLO}}^S$: double real subtraction \rightarrow different configurations

(a) one unresolved parton

(b) two color-connected unresolved partons

(c) two almost color-connected unresolved partons

(d) two color-unconnected unresolved partons

[A. Gehrmann De-Ridder, T. Gehrmann, N. Glover]

(c): two almost color-connected unresolved partons:

i $i \quad j \quad k$ $k \quad l \quad m$ $\begin{array}{ccc} & & & I & K \\ \hline \end{array}$ M

share ^a common radiator

accounted for by products of two tree-level three-parton antennae functions

distinguish cases where common radiator is in the initial or final configuration

$d\sigma_{\rm \bf \scriptscriptstyle M}^S$ $_{\text{NNLO}}^S$: double real subtraction \rightarrow different configurations

(a) one unresolved parton

(b) two color-connected unresolved partons

(c) two almost color-connected unresolved partons

(d) two color-unconnected unresolved partons

[A. Gehrmann De-Ridder, T. Gehrmann, N. Glover]

(d): two color-unconnected unresolved partons:

- two well separated partons in the colour chain
- product of independent three-parton antenna functions

NNLO Antenna subtraction

(a): remove poles from loop integral: [A. Gehrmann De-Ridder, T. Gehrmann, N. Glover]

- virtual correction has IR poles which have to be removed bymeans of the real counterpart
- subtraction term contains integrated antenna $\mathcal{X}_{i.}^{0}$ i,jk

NNLO Antenna subtraction

(b): subtraction of single unresolved limits: [A. Gehrmann De-Ridder, T. Gehrmann, N. Glover]

- subtraction of singular configurations originating when the real radiation correction to the one loop amplitude becomes soft orcollinear.
- subtraction term is ^a combination of three-parton tree-level X^0_\cdot $_{i,jk}^0$ and three parton one-loop $X^1_{i,j}$ $\frac{1}{i,jk}$ antenna functions.

NNLO Antenna subtraction

[A. Gehrmann De-Ridder, T. Gehrmann, N. Glover] (c): remove oversubtracted terms:

- remove terms which are common to both previouscontributions and are oversubtracted
- subtraction term contains initial-final and final-final antenna

