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Motivation:

Tevatron and LHC: machines for QCD precision physics

⇒ new discovery potential related to how good we understand

what we already know

For precise predictions we need a precise determination of

coupling constants

parton distributions

quark masses

...

Need higher order calculations: NLO, NNLO ...
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Subtraction at NLO

For an m-jet cross section, need to integrate numerically over

phase space:

LO:

dσLO =

∫

dΦm

dσtree

NLO:

dσNLO =

∫

dΦm+1

dσR
NLO +

∫

dΦm

dσV
NLO

Problem: same divergent structure as virtual part but summation
occur only after phase space integration

divergent numerical
integral
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Subtraction at NLO

For an m-jet cross section, need to integrate numerically over

phase space:

LO:

dσLO =

∫

dΦm

dσtree

NLO:

dσNLO =

∫

dΦm+1

(

dσR
NLO−dσS

NLO

)

+

[

∫

dΦm+1

dσS
NLO +

∫

dΦm

dσV
NLO

]

Solution: Introduce subtraction term which reproduces σR
NLO in

all singular limits, and can be integrated analytically

Local counter term
integral

[Z. Kunszt, D. Soper]
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Subtraction at NLO

For an m-jet cross section, need to integrate numerically over

phase space:

LO:

dσLO =

∫

dΦm

dσtree

NLO:

dσNLO =

∫

dΦm+1

(

dσR
NLO−dσS

NLO

)

+

[

∫

dΦm+1

dσS
NLO +

∫

dΦm

dσV
NLO

]

Solution: Introduce subtraction term which reproduces σR
NLO in

all singular limits, and can be integrated analytically

Local counter term
integral

[Z. Kunszt, D. Soper]

Different subtraction methods exists: dipole, FKS, antenna,...
[S. Catani, M. Seymour, S. Weinzierl, S. Frixione, Z. Kunszt, A. Signer, M. Grazzini, V. Del Duca, G. Somogy, Z. Trocsanyi,

D. Kosower, J. Campbell, M. Cullen, N. Glover; A. Daleo, A. Gehrmann-De Ridder, T. Gehrmann, D. Maître]
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NLO Antenna Subtraction
How is dσS

NLO constructed within the antenna frame work?

It must satisfy:
dσR

NLO
soft & collinear limit

−→ dσS
NLO

Real correction dσR
NLO given by

dσR
NLO = N

∑

m+1

dΦm+1
1

Sm+1

∣

∣M0
m+1

∣

∣

2
J
(m+1)
m (k1, . . . , km+1)

Exploit factorization of phase space and matrix element in soft and coll. limit:

dΦm+1 (. . . , i, j, k, . . .)
j unresolved
−→ dΦm (. . . , I,K, . . .) dΦXijk

(i, j, k, I,K)

∣

∣M0
m+1 (. . . , i, j, k, . . .)

∣

∣

2 j unresolved
−→

∣

∣M0
m (. . . , I,K, . . .)

∣

∣

2
F (i, j, k)+ regular terms

F (i, j, k): soft eikonal factor or collinear splitting function,

I,K: remapped on-shell momenta: i+ j + k = I +K.
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NLO Antenna Subtraction
And thus dσS

NLO can be constructed as:

dσS
NLO = N

∑

m+1

dΦm+1
1

Sm+1

∑

j

X0
ijk |Mm|2J

(m)
m (k1, . . . , km+1)

where Xijk
j unresolved
−→ F (i, j, k).

Pictorially:

1

m + 1

i

j

k

1

m + 1

I

K

i

j

k

I

K

∑

m+1

dΦm+1|Mm+1|
2
J (m+1)
m −→

∑

m+1

dΦm|Mm|2J (m)
m

∑

j

dΦX0
ijk

X0
ijk
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NLO antenna subtraction
NLO antenna function X0

ijk
contains all soft and collinear configuration of parton j

emitted between two hard color-connected partons i and k

X0
ijk = Sijk,IK

∣

∣

∣
M0

ijk

∣

∣

∣

2

|M0
IK |

2 , dΦX0
ijk

=
dΦ3

P2

Antennae computed from matrix elements of physical processes

2

2
A0

qgq =

+

Integrated subtraction term can be computed analytically

|Mm|2 J (m)
m dΦm

∫

dΦX0
ijk

X0
ijk ∝ |Mm|2 J (m)

m dΦm

∫

dΦ3

∣

∣M0
ijk

∣

∣

2
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Hadronic initial state

Cross section for hadronic initial state: (pp,pp̄)

P1

P2

ξ1P1

ξ2P2

1

m

dσ =
∑

h1,h2,a,b

∫ 1

0

dξ1
ξ1

dξ1
ξ2

fh1

a

(

ξ1, µ
2
F

)

fh2

b

(

ξ2, µ
2
F

)

dσ̂ab

(

ξ1P1, ξ2P2, µ
2
F

)
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Hadronic initial state

Cross section for hadronic initial state: (ep)

P1

P2

ξ1P1
1

m

dσ =
∑

h1,a,b

∫ 1

0

dξ1
ξ1

dξ1
ξ2

fh1

a

(

ξ1, µ
2
F

)

δ (1− ξ2) dσ̂ab

(

ξ1P1, ξ2P2, µ
2
F

)
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Hadronic initial state

i

j

k

I

K

i

j

k

I

K

i

j

k

I

K

i

j

k

I

K

i

k

j

I

K

i

k

j

I

K

final-final:

Applied to e+e−

→ 3 jets at NNLO [A. Gehrmann De-Ridder, T. Gehrmann, N. Glover, G. Heinrich; S. Weinzierl]

initial-final:

Sufficient for DIS (2+1)-jet [A. Daleo, T. Gehrmann, D. Maître; A. Daleo, A. Gehrmann-De Ridder, T. Gehrmann, G. L]

initial-initial:

Needed for vector boson plus jet production
[R. Boughezal, A. Gehrmann-De Ridder, M. Ritzmann]
[A. Daleo, T. Gehrmann, D. Maître]
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m-jet cross section

n-parton contribution to the m-jet cross section (p = ξ1P1, r = ξ2P2):

dσ̂i
ab (p, r) = N

∑

n

dΦn (k1, . . . , kn; p, r)
1

Sn

|Mn (k1, . . . , kn; p, r)|
2 J

(n)
m (k1, . . . , kn)

LO: n = m

NLO: n = m+ 1

NNLO: n = m+ 2

Subtraction term for initial-final singularity:

dσ̂S(if) =N
∑

m+1

dΦm+1 (k1, . . . , km+1; p, r)
1

Sm+1

×
∑

j

X0
i,jk |Mm (k1, . . . , km+1;xp, r)|

2J
(m)
m (k1, . . . , km+1)
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I-F NLO phase space factorization

Kinematics is now: q + p → kj + kk ⇒ q + xp → KK

k1

km+1

r

q

p

kj

kk

k1

km+1

r

q

xp
KK

Limits:

xp → p KK → kk when j soft

xp → p KK → kj + kk when j || k

xp → p− kj KK → kk when j || i

Phase space factorization for m+ 1 particles:

dΦm+1(k1, . . . , km+1; p, r) = dΦm(k1, . . . , KK , . . . , km+1;xp, r)×
Q2

2π
dΦ2(kj , kk; p, q)

dx
x
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I-F NLO matrix element factorization

Obtain antennae functions by crossing final-final NLO antennae

K

1

m + 1

r

xp

j

k

1

m + 1

r

p

q
j

k

q

K

p

p

∑

m+1

dΦm+1|Mm+1|
2
J (m+1)
m −→

∑

m+1

dΦm|Mm|2J (m)
m

∑

j

Q2

2π
dΦ2

dx

x
X0

i,jk

Again integrated subtraction term can be computed analytically:

X 0
i,jk (x) =

1

C (ε)

∫

dΦ2
Q2

2π
X0

i,jk , C (ε) = (4π)
ε e

−εγE

8π2

[A. Daleo, T. Gehrmann, D. Maître]
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NLO integrated subtraction term

Integrated subtraction term has to be convoluted with PDFs

Make change of variable and obtain

dσS(if) (p, r) =
∑

m+1

∑

j

Sm

Sm+1

∫

dξ1
ξ1

∫

dξ2
ξ2

∫ 1

ξ1

dx

x
fh1

a

(

ξ1

x

)

fh2

b (ξ2)

× C(ε)X 0
i,jk(x) dσ̂

B(ξ1P1, ξ2P2)

Mass factorization can be carried out

Phase space integration in dσ̂B and convolutions can be done

numerically
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Subtraction at NNLO

Structure of NNLO m-jet cross section

dσNNLO =

∫

dΦm+2

(

dσR
NNLO − dσS

NNLO

)

+

∫

dΦm+2

dσS
NNLO

+

∫

dΦm+1

(

dσV,1
NNLO − dσVS,1

NNLO

)

+

∫

dΦm+1

(

dσVS,1
NNLO + dσMF,1

NNLO

)

+

∫

dΦm

(

dσV,2
NNLO + dσMF,2

NNLO

)

.

dσS
NNLO: real radiation subtraction term for dσR

NNLO,

dσV S,1
NNLO: one loop real subtraction term for dσV,1

NNLO,

dσV,2
NNLO: two loop virtual corrections,

dσMF,i
NNLO: mass factorization counter terms (i=1,2).

Each column is numerically finite and free of IR ε-poles
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I-F NNLO: double real radiation

Obtain antennae functions by crossing final-final NNLO antennae

L

1

m + 1

r

xp

j

k

1

m + 2

r

p

q
j

l

q

L

p

p

l

k

Phase space factorization similar to NLO, with one particle more

dΦm+2 (k1, . . . , kj , kk, kl, . . . , km+2; p, r) =

dΦm (k1, . . . ,KL, . . . , km+2;xp, r)
Q2

2π
dΦXi,jkl

(kj , kk, kl, p, q)
dx

x

Again integrated subtraction term can be computed analytically

2 → 3 particle phase space
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I-F NNLO: one-loop real radiation

j

k

1

m + 1

r

p

m + 1

K

1

r

xp

q
j

k

q

K

p

p

m + 1

K

1

r

xp

q
j

k

q

K

p

p

Single unresolved limit of 1-loop amplitude:

Loopm+1
j unresolved
−→ Splittree × Loopm + Splitloop × Treem

[Z. Bern, L.D. Dixon, D. Dunbar, D. Kosower; S. Catani, M. Grazzini; D. Kosower, P. Uwer]
[Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt]
[Z. Bern, L.D. Dixon, D. Kosower; S. Badger, E.W.N. Glover]

Thus: X1
i,jk

= Si,jk;I,K

∣

∣

∣
M

1
i,jk

∣

∣

∣

2

∣

∣

∣
M0

I,K

∣

∣

∣

2 −X0
i,jk

∣

∣

∣
M

1
I,K

∣

∣

∣

2

∣

∣

∣
M0

I,K

∣

∣

∣

2
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Initial-final antenna functions
Quark initiated tree level one loop

quark-quark

q → gq A0
q,gq

A1
q,gq

, Ã1
q,gq

, Â1
q,gq

q → ggq A0
q,ggq

,Ã0
q,ggq

q → q′q̄′q B0

q,q′q̄′q

q′ → qq̄q′ B0

q′,qq̄q′

q → qq̄q C0
q,qq̄q

, C0
q̄,q̄qq̄

, C0
q̄,qq̄q̄

quark-gluon

q → gg D0
q,gg

D1
q,gg

, D̂1
q,gg

q → ggg D0
q,ggg

q → q′q̄′ E0

q,q′q̄′
E1

q,q′q̄′
, Ẽ1

q,q′q̄′
, Ê1

q,q′q̄′

q → q′q̄′g E0

q,q′q̄′g
, Ẽ0

q,q′q̄′g

q′ → q′q E0

q′,q′q
E1

q′,q′q
, Ẽ1

q′,q′q
, Ê1

q′,q′q

q′ → q′qg E0

q′,q′qg
, Ẽ0

q′,q′qg

gluon-gluon

q → qg G0
q,qg

G1
q,qg

, G̃1
q,qg

, Ĝ1
q,qg

q → qgg G0
q,qgg

, G̃0
q,qgg

q → qq′q̄′ H0

q,qq′q̄′
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Integrated antenna computation

I [0] I [2] I [2, 6]

I [1, 2, 5] I [2, 3, 5] I [2, 4, 9]

I [1, 3, 4, 6] I [2, 3, 5, 6] I [1, 2, 4, 5]

V [1, 3] V [1, 4] V [2, 4]

V [1, 2, 3, 4] V [1, 2, 3, 4, 5] C [1, 2, 3, 4]

Reduce phase space integrals to master integrals

Integration over inclusive 2- or 3-particle phase space using

differential equations in q2 and x = − q2

2 p·q

Boundary condition from explicit computation at x = 1

9 real and 6 virtual masters:
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Computation of master integrals

Masters computed using differential equations

Example: (d = 4− 2ε)







x
∂I[2]
∂x

= −d−4
2 I [2] + 3d−8

2

(

1 + 1
x−1

)

I[0]
Q2

Q2 ∂I[2]
∂Q2 = (d− 4) I [2] ⇒ I [2] ∝

(

Q2
)

−2ε

boundary condition from explicit computation at x = 1

putting all together:

I[2] =
2−7+4ε

π3−2ε

Γ(1 − ε)3

Γ(3 − 3ε) Γ(2 − 2ε)

3ε − 2

1 − 2ε
(1 − x)

1−2ε
x
ε
(Q

2
)
−2ε

2F1(1 − 2ε, 1 − ε, 2 − 2ε, 1 − x)

For simple masters exact result in ε → expanded with HypExp

For the others expansion up to needed power of ε

[T. Huber, D. Maître]
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Check with DIS structure functions

Completed full set of integrated 2 → 3 tree-level and 2 → 2

one-loop antennae

Cross check with NNLO DIS structure functions

DIS cross section for photon exchange

d2σ

dx dy
=

2πα2

Q4
s
[(

1 + (1− y)2
)

F2(x,Q
2)− y2FL(x,Q

2)
]

Checks A, B and C type antenna functions

At NLO (before mass factorization)

1

Cf

(

F
(1)
2,q −

d− 1

d− 2
F

(1)
L,q

)

= 4A0
q,gq + 8δ (1− z)F (1)

q

1

d− 2

(

F
(1)
2,g −

d− 1

d− 2
F

(1)
L,g

)

= −4A0
g,qq̄

[E. Zijlstra, W. van Nerveen; S. Moch, J. Vermaseren, A. Vogt]
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Check with DIS structure functions

Completed full set of integrated 2 → 3 tree-level and 2 → 2

one-loop antennae

Cross check with NNLO DIS structure functions

DIS cross section for photon exchange

d2σ

dx dy
=

2πα2

Q4
s
[(

1 + (1− y)2
)

F2(x,Q
2)− y2FL(x,Q

2)
]

Checks A, B and C type antenna functions

At NLO (before mass factorization)

1

Cf

(

F
(1)
2,q −

d− 1

d− 2
F

(1)
L,q

)

= 4A0
q,gq + 8δ (1− z)F (1)

q

1

d− 2

(

F
(1)
2,g −

d− 1

d− 2
F

(1)
L,g

)

= −4A0
g,qq̄

[E. Zijlstra, W. van Nerveen; S. Moch, J. Vermaseren, A. Vogt]

Full agreement!

HP2.3rd 2010, Firenze – p. 19/26



Check with φ-DIS structure functions

Structure functions for a scalar particle coupling only to gluons

Permits to check integrated F , G and H-type antenna functions

DIS cross section for scalar exchange has only one structure

function: Tφ,i , for i = q, g

Some example

T
(1)
φ,g = 2N F0

g,gg + 2nfGg,qq̄ + 4 δ (1− z)F (1)
g

1

Cf (1− ε)
T

(1)
φ,q = −4N G0

q,qg

T
(2)
φ,g

∣

∣

∣

N2
= F0

g,ggg + 4F1
g,gg + δ (1− z)

(

8F (2)
g + 4F (1)

g

)

[S. Moch, G.Soar, J. Vermaseren, A. Vogt]
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Check with φ-DIS structure functions

Structure functions for a scalar particle coupling only to gluons

Permits to check integrated F , G and H-type antenna functions

DIS cross section for scalar exchange has only one structure

function: Tφ,i , for i = q, g

Some example

T
(1)
φ,g = 2N F0

g,gg + 2nfGg,qq̄ + 4 δ (1− z)F (1)
g

1

Cf (1− ε)
T

(1)
φ,q = −4N G0

q,qg

T
(2)
φ,g

∣

∣

∣

N2
= F0

g,ggg + 4F1
g,gg + δ (1− z)

(

8F (2)
g + 4F (1)

g

)

[S. Moch, G.Soar, J. Vermaseren, A. Vogt]Full
ag

re
em

en
t!
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Conclusions

Antenna subtraction scheme

subtraction method based on collecting all IR and collinear

radiation between two pair of color connected hard partons

final-final case applied successfully at NNLO for e+e− → 3-jet

all ingredient for initial-final subtraction now available

cross check of initial-final antennae with DIS structure

functions is completed

Potential applications:

NNLO DIS (2+1)-jet production

contribution to hadron-collider jet production
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Outlook:
DIS (2+1)-jet production @ NNLO

13Roman Kogler, MPI Munich, DIS 2010

 from Jet Cross Sectionss!
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 fit to jetss!

• Simultaneous fit to all 62 measurements 
of inclusive, 2- and 3-jet cross sections

• result dominated by theoretical 
uncertainty, missing higher orders 

NNLO calculations needed

DIS 2010, Florence, Italy Jet cross sections in NC DIS at HERA 6

Dijet cross sections: constraints on pPDFs
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 scale
R

µ
PDF uncertainty (CTEQ6.6)
MSTW 2008
ZEUS−JETS
ZEUS−S

Predicted
Gluon
fraction:
75% at low Q2,
> 60% at
Q2

∼ 500 GeV2

Theoretical
uncertainties

• Gluon fraction and theoretical uncertainties in the phase-s pace region of the
• measurements:

→ PDF uncertainty large in regions of phase space where the glu on fraction is
→ still sizeable
→ → high precision dijet data have the potential to constrain fu rther the proton
→ → PDFs when included in the global fits

ZEUS Collab, ZEUS-pub-10-005

April 19-23, 2010 C Glasman (Universidad Aut ónoma de Madrid)

Needed for several reasons:

Determination of αS

Gluon pdfs
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Outlook:
DIS (2+1)-jet production @ NNLO

All ingredients present
real matrix elements,
[K. Hagiwara, D. Zeppenfeld, F. A. Berends, W. Giele, H. Kuijf, N. K. Falck, D. Graudenz, G. Kramer]

mixed real-virtual matrix elements,
[Z. Bern, L. J. Dixon, D. A. Kosower, S. Weinzierl, E. W. N. Glover, D. J. Miller, J. M.Campbell]

two loop matrix elements,
[L. W. Garland, T. Gehrmann, E. W. N. Glover, A. Koukoutsakis, E. Remiddi]

subtraction terms.
[A. Daleo, A. Gehrmann De-Ridder, T. Gehrmann, D. Maître, G. L.]

Next steps:

implementation of a parton level Monte Carlo event generator.
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NNLO double real subtraction
dσS

NNLO: double real subtraction → different configurations

dσS
NNLO

(a) one unresolved parton

(b) two color-connected unresolved partons

(c) two almost color-connected unresolved partons

(d) two color-unconnected unresolved partons
[A. Gehrmann De-Ridder, T. Gehrmann, N. Glover]

(a): one unresolved parton:

one unresolved parton but the experimental observable selects only m jets,

three parton antenna function X0
i,jk

can be used (like at NLO)

I Kki j
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NNLO double real subtraction
dσS

NNLO: double real subtraction → different configurations

dσS
NNLO

(a) one unresolved parton

(b) two color-connected unresolved partons

(c) two almost color-connected unresolved partons

(d) two color-unconnected unresolved partons
[A. Gehrmann De-Ridder, T. Gehrmann, N. Glover]

(b): two color-connected unresolved partons:

four parton antenna function X0
i,jkl

complete set of four parton antennae for i-f configuration is now available

ki j l I L
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NNLO double real subtraction
dσS

NNLO: double real subtraction → different configurations

dσS
NNLO

(a) one unresolved parton

(b) two color-connected unresolved partons

(c) two almost color-connected unresolved partons

(d) two color-unconnected unresolved partons
[A. Gehrmann De-Ridder, T. Gehrmann, N. Glover]

(c): two almost color-connected unresolved partons:

share a common radiator

accounted for by products of two tree-level three-parton antennae functions

distinguish cases where common radiator is in the initial or final configuration

ki j l m I MK
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NNLO double real subtraction
dσS

NNLO: double real subtraction → different configurations

dσS
NNLO

(a) one unresolved parton

(b) two color-connected unresolved partons

(c) two almost color-connected unresolved partons

(d) two color-unconnected unresolved partons
[A. Gehrmann De-Ridder, T. Gehrmann, N. Glover]

(d): two color-unconnected unresolved partons:

two well separated partons in the colour chain

product of independent three-parton antenna functions

ki j n o p I K N P
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NNLO Antenna subtraction

dσ
V S,1
NNLO: one loop real subtraction → several requirements

dσ
V S,1
NNLO

(a) remove explicit IR poles from loop

(b) subtract single unresolved limits

(c) remove oversubtracted terms

[A. Gehrmann De-Ridder, T. Gehrmann, N. Glover](a): remove poles from loop integral:

virtual correction has IR poles which have to be removed by

means of the real counterpart

subtraction term contains integrated antenna X 0
i,jk
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NNLO Antenna subtraction

dσ
V S,1
NNLO: one loop real subtraction → several requirements

dσ
V S,1
NNLO

(a) remove explicit IR poles from loop

(b) subtract single unresolved limits

(c) remove oversubtracted terms

[A. Gehrmann De-Ridder, T. Gehrmann, N. Glover](b): subtraction of single unresolved limits:

subtraction of singular configurations originating when the real

radiation correction to the one loop amplitude becomes soft or

collinear.

subtraction term is a combination of three-parton tree-level

X0
i,jk and three parton one-loop X1

i,jk antenna functions.
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NNLO Antenna subtraction

dσ
V S,1
NNLO: one loop real subtraction → several requirements

dσ
V S,1
NNLO

(a) remove explicit IR poles from loop

(b) subtract single unresolved limits

(c) remove oversubtracted terms

[A. Gehrmann De-Ridder, T. Gehrmann, N. Glover](c): remove oversubtracted terms:

remove terms which are common to both previous

contributions and are oversubtracted

subtraction term contains initial-final and final-final antenna
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