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Major Activities and Goals

Determining charged-particle trajectories

Developing (“tracking”) requires most reconstruction CPU
algorithms for HL-LHC m Develop more efficient algorithms
m Develop more performant algorithms

Hardware accelerators are the way forward to speed up
and reduce infrastructure cost
m Use of hardware accelerators for tracking
m ML on accelerators in realistic HEP apps

Re-engineering algorithms for

. . . Capitalize on industry and data science techniques
Exploiting major advances in and tools

machine learning (ML) m Investigate new HEP applications of ML
m  Apply new ML techniques to HEP




urrent Projects

Accelerated GNN Tracking

accel-gnn-tracking
More information

GPU Trigger Project

Allen: a GPU trigger for LHCb
More information

APV—'Tind’erA

PV-Finder

CNN's to find primary vertices
More information

d

ACTS

Development of experiment-
independent, inherently parallel
track reconstruction.
More information

ML4Jets

Machine Learning for jets

Machine learning for jets
More information

exploratory-ml

Analysis Reinterpretation
More information
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BE

mkFit

Modernizing Kalman filter
tracking for CMS
More information

FastPID

Fast PID simulation for LHCb
More information

ML on FPGAs

Fast inference of deep neural
networks on FPGAs
More information

One goal for this retreat:
update our webpages!
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ACAT-2019
CtD-2020: improved architecture
CtD-2020: improved target hists
U-Net Fall-2020 °
Fall 2020: full LHCb MC »°
full LHCb MC - two KDE l‘ .

PV Finder

We extended our work on Pv-finder.
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m we systematically studied performance for variations on the original
architecture and developed a new (U-Net) architecture;
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m we developed a new set of kernel density estimators (KDEs) that

enable better performance and which a deep neural network (DNN)
can learn;

m we extended our studies to use full LHCb Monte Carlo in addition Y —
to the “toy Monte Carlo” we used for initial studies; | # BM_ACN_4i4_P_6L (10966)

. ACN_4i4_P_6L_1S_BN_RC1 (11975)
m we developed a DNN to read in track parameters and produce KDEs ACN_4i4_P_8L_3S (18719)
which can be used by the original DNN to find primary vertices. ACN_4i4_P_10L_45_BN (19646)

ACN_4i4_8L_DenseNet_BN (41983) 0'.

o
o
S)

T T

False Positive Rate (per event)
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PV Finder: Plans for Year 4

Our primary goal in Year 4 is to develop a fully perfformant DNN that
starts with track information and finds primary vertices and instantiate it
in both the GPU framework for HItl and the CPU framework for HIt2.

m improve the tracks-to-KDE DNN algorithm developed this past
year;

m build a GPU inference engine that works in the Allen framework;

m develop an algorithm that associate's individual tracks with found
primary vertices.
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ACTS: Seeding on ATLAS ITK  ris Heather Gray anc

Lauren Tompkins

"Ik, tibar p=200

ATLAS ITk geometry in ACTS

Seeding efficiency
Seeding efficiency
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Preliminary results for seeding performance
(pt>500 MeV)

- 92% efficiency

- 65% fake rate

Number of duplicated seeds
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Two papers in advanced preparation | ,
(expected to be submitted this spring) b GeV]
- A Common Track Software (ACTS) , ,
- A GPU based Kalman Filter for Sﬁg?;rtteg:tghreegﬁggsg reduce
High-Energy Physics Experiments




ACTS: Improving Seeding & Vertexing

Layer Linking for Pixel Seed Finding
- Pixel layers are linked together based on probability learned
from simulation
- Inthe absence of any other requirements, layer links reduce
combinatorics by 50%
- Applying cuts to seeds reduces impact. Currently exploring
application to more layers to maximize impact

-+ No cuts, no LayerLinking

== No cuts, with LayerLinking

Technique from
D. Emelianov
and TrackML
Challenge
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Integrated ACTS vertexing algorithms into Athena:
- Gaussian Track Density Seed Finder
- Full Billoir Vertex Fitter

- lIterative Vertex Finder
ACTS version shows same physics results
but with a significant CPU time reduction

* Acts-IVF FullBilloir

~&- Athena-IVF FullBilloir
* Acts-IVF FullBilloir

—=- Athena-IVF FullBilloir

300 400
time(ms)



ACTS: Evolutionary Algorithms automatically
optimize track seeding parameters

Tracking often requires extensive hand tuning of parameters

Developed strategy based on evolutionary algorithms (EA) to
optimize track seeding parameters automatically.

Tested on ACTS generic detector (collider) and LDMX detector
(fixed target).

m Improved efficiencies, lowered duplicate and fake rates in
both cases

B EA worked best compared to hand tuning or automated
parameter scan

m Planto apply to ITK geometry

Paper accepted for vCHEP2021

— best Efficienc: y
- sigmaScattering

125 150 175 200

Work of IRIS-HEP fellow &
undergraduate Peter Chatain




ACTS Plans

Core is moving rapidly towards deployment and commissioning over the next year (partnership with
USATLAS)

O  Tuning ACTS tracking algorithms for ITk
O  ACTS tracking integration into athena

R&D Directions
O  Tracking on accelerators
m  End-to-end tracking on GPUs with traccc (w/ USATLAS and HEP-CCE)
O  Machine-learning for tracking
m  Evolutionary algorithms for algorithmic tuning
m Developing a library of various implementations to facilitate comparisons
® Layer-linking for pixel seed finding
® spotify bucket algorithm (fellow project)

m Test LHCb PV-finder for ACTS generated ATLAS geometry, possibly port to ACTS
(collab with M.Sokoloff, DIANA-HEP fellow)

O  ACTS exploration and testing for other experiments continues
m LDMYX, Belle-2, sPhenix, muon collider, EIC?



GPU

trigger for LHCb: Allen

In the next run, LHCb will have triggerless readout

First-stage software trigger must run at 30 MHz

Massive parallelization required — GPUs well suited

Allen allows for an arbitrary sequence of configurable algorithms to be processed on a GPU
Run trigger over O(1000) events in parallel

Single exchange of input/output data with the CPU

GPU/CPU memory allocation controlled by custom memory manager

Allen adopted as the baseline implementation for Run 3 first-level trigger at LHCb

The IRIS-HEP part of the project now primarily focussed on the monitoring element of Allen
Monitoring of trigger rates, features of selected events and, where possible, features of
events that aren’t selected

Selection of recent progress:

Introduced functionality to split “data slices” of events from multiple data-taking runs into
separate blocks allowing run change configuration to be performed between runs

e Unit tests to test this feature in nightly builds
Initial work towards moving monitoring task from dedicated thread to individual host
algorithms...

Pl: Mike Williams



Allen monitoring goal for Run 3

Remove dedicated monitoring thread
Thread-safe counters/histograms filled from individual threads

Current monitoring flow:
DEVICE [ stream ’ stream }

i i i |
thread N thread “ thread ]

object data

stream

stream ’

HOST [ ]

main thread ¢

write to file

@ Monitoring performed in dedicated
thread

@ Monitored quantities not stored in
Allen’s decision outputs must be copied
to host and passed to monitoring
thread

.

n progress: Run 3 target:
DEVICE stream stream stream stream stream stream Stream Stroam
DEVICE ( monitor ) [ monitor ] [ monitor ] ( monitor )
i i i 1 i e e e o
H OST thread thread thread thread H OS T thread thread thread thread
( e J ( nepliio ] ( monitor J [ monitor J ( monitorj [ monitorJ (monitorj [monitor
counters/histograms —
remove separate monitoring thread optional | Sl il te

@ Monitoring functionality to be added to the base class for host algorithms to allow
any host algorithm to define monitoring objects

@ Extending this to also have monitoring in device algorithms will reduce the volume of
data to be copied back from the device to the host

@ For the start of Run 3 data taking, Allen must also output monitoring objects to
LHCb’s common gaudi interface for monitoring




Parallelized & Vectorized KF Tracking (mKkFit)

e Extended infrastructure to support multiple iterations, including hit masking.
o Triggered a major re-structuring of hit format to be identical to that used in CMSSW,
thereby minimizing reformatting overhead.
e Work on the CMSSW side to:
o Configure mkFit
o Accept tracks built by mkFit, fit and store in track collection
o Run standard CMS track validation module
o Performance results to be included in HLT TDR (to be submitted to LHCC in summer)

e Aiming for Run 3 tracking configurations using mkFit into next major CMSSW release
cycle (12.X)

Pls: Peter Wittich,
Avi Yagil



Line Segment Tracking — LST

e Novel tracking algorithm designed and developed targeting GPUs.
o Based on Phase-2 CMS tracker geometry.
o Achieved good efficiency for PU200 © P moctis n OMS Phase 2 acker

enables parallel algorithm in outer tracker

e Current work focused on reducing linking

CMS Phase

combinatorics (redundancy in track building) : Outer tracker

e Development on CPU, “mirrored” to GPU
o Common framework and repository for both
(6] Algorithmic efficiency of built track

o Common validation suite, ~identical results cancidates of no missing it racks
(up to precision)

Muon gun i

e Working to reduce memory footprint on GPU

e Testing various schemes (e.g. unified vs
explicit allocation as well as nested parallelism,
vs grid allocation)

e Technique also included in HLT TDR for HL-LHC

@ Mini-doublets can be built in parallel © lllustration of parallel segment
building/linking and its benefits

high Pt pass low P fail

t >
“Stubs / Mini-doublets” ( @ )—

non-exhaustive list of possible
track candidates shown below

0.6 08

Segments can be linked
geometrically



Plans for years 4 & 5

e mkFit Run3 related:
o Run 3 integration / testing / deployment
o Cleanup and consolidate implementation “shortcuts” physics tuning

e mkFit Phase2 related:

o Adjust to phase-2 geometry, test, and adjust as needed
m Usage of min-doublet?
m Usage of patatracks as seeds?

e SLT related:

o Continue development with emphasis on timing and memory footprint
o Deployment into CMSSW and testing performance in-situ

For both: keep am eye on HW (e.g. AMD) as well as SW developments (e.g. One API by Intel)



GNN Tracking: Y3 Accomplishments

Data Augmentation:
o  Added end-caps to graphs using TrackML dataset (other projects are barrel only) [ ] Pls: Peter Elmer,
o  Added edge features to Interaction Network (IN) [Princeton] and edge classifier network [ ] Mark Neubauer
m  Demonstrated improved performance (faster convergence, higher accuracy) using simple edge parameters (phi, eta, dr, dR)
m  Hough Transform accumulator was most useful edge feature for edge classifier network but at very high computational cost
Graph Construction
o  Converted ExaTrkX graph construction code from Pytorch to Pytorch Geometric [ ]
o  Standardized code to measure graph construction edge efficiency and truth efficiency [Princeton]
o Implemented DBScan-based graph construction in Cartesian and eta-phi space (achieved improved graph efficiency) [Princeton]
Network Architecture Improvements
o  Achieved 99.7% edge classification efficiency and 85-94% tracking efficiency with ~6,000 learnable parameter IN (substantially

smaller than previous architectures) [Princeton]
Implemented a instance segmentation based architecture to allow one-shot tracking [Princeton]

¥ HEP.TrkX
¥ HEP.TrkX+
¢ DBSCAN

0.6

Left: graph construction edge
efficiency (true edges/all edges)
for range of pt for 3 different
algorithms

Right: track finding efficiency
(using DBScan and UnionFind)
for the IN architecture (found
track counted if >50% of hits are
from the same particle and >50%
of main particle’s truth hits are
included)

o =
) ©
o o

Edge Efficiency
o
o0
o

>
9
c
A
2
=y
w
n
i
@
>
=
o

o
~
o

. 7 DBSCAN
¥ union-find
0.5 0.6 0.75
1.5

pPin [GeV]

Py [GeV]



Y3 Accomplishments Cont

e Tracking efficiency measurements
o  Defined 3 tracking efficiency working points (clustering, ExaTrk (see previous slide) and full match) [Princeton, ]
o  Measured efficiency of UnionFind and DBScan track finding for IN and edge classifier [Princeton, ]

e FPGA-based GNN Acceleration
o Implemented first GNN in HLS for particle physics using hls4ml [UCSD]
m  Small graphs (pt>2GeV, 1/16 graph), 5 ns clock periods, good performance at <12,6> bit precision
m  Implementing user-friendly front-end code into his4ml (Pytorch Geometric GNNs) [UCSD]
o  Implemented OpenCL-based GNN inference, data transfer latency is a large bottleneck [Princeton]
e Publications and (Selected) Talks
o  Papers: “Charged particle tracking via edge-classifying interaction networks” (vCHEP 2021), “Instance Segmentation for One-Shot
Conformal Tracking at the LHC” and “Accelerated Charged Particle Tracking with GNNs on FPGAs” (NeurlPS ML4PS 2020)
o  Talks: FastML for Science, Accelerated Al for Big-Data Experiments, IML Conference, ML4SYS GNN Workshop Keynote
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Left: tracking efficiency with UnionFind for edge-classifier network vs pt (far left) and eta (center left)
Right: AUC (center right) and resource utilization breakdown (far right) for his4ml implementation of IN on FPGA


https://github.com/fastmachinelearning/hls4ml
https://arxiv.org/abs/2103.16701
https://arxiv.org/abs/2103.06509
https://arxiv.org/abs/2103.06509
https://arxiv.org/abs/2012.01563
https://indico.cern.ch/event/924283/contributions/4105258/
http://www.ncsa.illinois.edu/Conferences/AcceleratedAINCSA/presentations.html#dezoort
https://indico.cern.ch/event/852553/timetable/#5-accelerated-pixel-detector-t
https://mlsys.org/virtual/2021/workshop/1642

Vision for Y4 and Y5

Planned improvements to FPGA implementations (Y4)
o  Scale to larger graph size [Princeton, UCSD]
o  Optimize matrix multiplication kernels in OpenCL [Princeton]
o  Explore pruning and QAT to reduce model size [UCSD]
o Implement graph construction on FPGA to bypass data transfer bottleneck [Princeton]

Efficiency comparisons to current tracking algorithms (Y4) [Princeton, , UCSD]
o Measure inference time on different computing systems
o  Define comparable tracking efficiency working point (possibly consider parameter resolution)
Evaluate GNN architectures with experimental data (Y4, Y5)
o CMS data test in collaboration with TrackingPOG (organizing hackathon) [Princeton]
o  ATLAS data test in collaboration with ExaTrkX [ ]
o  Emulate real tracking environment for hardware acceleration [UCSD]
Explore GNN architecture extensions and improvements (Y4, Y5)
o  Enforce invariance/equivariance to expected symmetries in learned GNN convolutions [Princeton]
o Test different localization bounding shapes and optimize tracking branch for instance segmentation
network [Princeton]
Extend and improve ML Particle Flow algorithm [UCSD] (Y4, Y5)

o  Analyze graph structure towards interpretable/explainable model
o Accelerate inference with co-processor as a service



HCal with GPU Trigger
t Highlights

_Going Beyonci
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, ) o ¢ Ultimate goal is to go from raw inputs to cluster
e Algorithm gives similar/better performance to default algo
- 3D+timing clustering performed in one NN
- We are aiming to go through the scheme of full integration
- preliminary 3D cluster algorithm with S.C. Hsu

» Additionally working with members of MIT EECS

- Not necessarily trying to become the default algorithm
* Most recent status update:

- Sonic at ML Forum April 7th

- New NN architecture explicitly designed for fast inference

e Working to merge information into a single algorithm

Pl: Phil Harris



Pi: Kyle Cranmer

ML4Jets: Y3 Accomplishments

. arXiv:2104.07061 [pdf, other] cs.DS  physics.data-an  statML

Exact and Approximate Hierarchical Clustering Using A*

Nicholas Monath, Avin. D y, Patrick Flaherty, Manzil Zaheer, Amr
Ahmed, Kyle Cranmer, Andrew McCallum
Abstract: Hierarchical clustering is a critical task in numerous domains. Many approaches are based on heuristics and the

. e 0 o g properties of the resulting clusterings are studied post hoc. However, in several applications, there is a natural cost function
eframed various problems in jet physics in bttt obles et Ao Ao e b
combinatorial optimization problem. To... 7 Mo

Submitted 14 April, 2021; nally announced Aj

terms-of hierarchical clustering. -

Hierarchical clustermg in particle physics through reinforcement learning

Authors: Johann Brehmer, Sebastian Macaluso, Duccio Pappadopulo, Kyle Cranmer

LG hep-ph

Abstract: Particle physics experiments often require the reconstruction of decay patterns through a hierarchical clustering of

. the observed final-state particles. We show that this task can be phrased as a Markov Decision Process and adapt
artnered with researchers a ass i e A e 7
) construct high-quality hierarchical clust... ¥ More

Submitted 18 December, 2 1 submitted 16 November, 2020; originally announced November 2020.
Comments: Accepted at the Machine Learning and the Physical Sciences workshop at NeurlPS

Amherst, Google Research on probabilistic

Data Structures & Algorithms for Exact Inference in Hierarchical Clustering

treatment of hierarchical clustering. oo S

scover meaningful structures in data, such as
scades of particle decays in particle physics. Typically
ximate algorithms are used for ference due to the combinatorial number of possible hierarchical clusterings. In
ing methods, we present novel

Submitted 22 October v1 submitted 26 February

e Data structures and algorithms that allow
us to efficiently search through search
spaces as large as 103%

e Papers at accepted AISTATS, NeurlPS, &
vCHEP. Submitted to UAI & snowmass

e Software implementations (python p— Greedy

e Fellows project to implement in Julia craceTrei e AR A
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ML4Jets: Vision for Y4/Y5 Impact

WMass.

Emerging Computational Techniques for Jet Physics

Sebastian Macaluso, Kyle Cranmer, Matthew Drnevich, Johann Brehmer (New York University);
Duccio Pappadopulo (N.A.); Atihm Giines Baydin (Ozford); Matthew Schwartz (Harvard)

vCHEP:

Would like to use Y3 developments to demonstrate that it is
possible to fit parameter of parton shower model summing over
all pOSSible Jet ClUSteringS Welghted appropriately, Kyle Cranmer', Matthew Drnevich', Sebastian Macaluso'+*, and Duccio Pappadopulo

"New York University

Reframing Jet Physics with New Computational Methods

Develop “parameterized trellis” connecting to VAE like models for
trees

Condition Bound

: : : : Posteri
Explore integration of algorithms with FastJet or other Jet pﬁzt,e”or
clustering tools § 0.0 !
QO
Longer term (who?): & 0.06
kel
[
e Extend algorithms to 2->3 splitting to aid in ML/PS = 0.04/
matching bottleneck for high jet multiplicity event §
generation <002,
e demonstrate use of probabilistic programming to efficiently . :
populate tales of phase space (eg. QCD faking a boosted o,oolfov—-%——?o——iTkw
jet tagger) Number of Leaves

Proof of principle: using prob. prog. to populate tails



Milestones

@ Innovative Algorithms Status On Schedule Due Date Completion Date

G4.1: Demonstrate that the Allen monitoring suite is deployable in the Allen multi-t... On-Time L 2 Sep 1

G4.2: Benchmark physics and technical performance of PVFinder with respect to ... On-Time @

G4.3: Demonstrate physics and technical performance of graph-based tracking pi... On-Time L J Sep 1

G4.4: Demonstrate physics and technical performance of calorimetric reconstructi... On-Time L J Sep 1

G4.5: Demonstrate the performance of sparse hierarchical trellis algorithm compa... On-Time ® Jun 1

G4.6: Demonstrate segment-linking approach to track finding using the CMS HL-L... On-Time L J Sep 1

G4.7: Adapt mkFit to perform track finding the CMS HL-LHC tracker geometry and... On-Time ® Sep 1
o On-Time & Sep 1

G4.8: Demonstrate the physics and technical performance of the ACTS reconstru.

G4.9: At least two LHC experiments use Institute developed algorithms in their pro On-Time L 2 Jun 1
G4.10: Institute developed tracking algorithms are used to produce HL-LHC simul... On-Time L J Mar 1

G4.11: Demonstrate physics and technical performance of at least three Institute t... m 0m

Many of our milestones are due during the next 6 months
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LST - Algorithm Overview

(@) Load h |tS N @ Mini-doublets can be built in parallel © |llustration of parallel segment
o en:’gl;nsog::;?elPa%hgi:mhalﬁeoﬁtgraz;iz(er Hit found in Hit NOT found in building/linking and its benefits
“ 5 search window search window
o Make mini-doublets (MD) s ~ ] Ony e loon
i % JerEEERI [T [ 2 when linking
o Make segments (LS) OMS Prase 2 =[] s
o __Outer tracker _ doublet linking

m Import piXGlS (pLS) ; ‘ T high Proass  lowPr il / = \
o Create tracklets L = MRS et
| TI’I p|eTS (T3) non-exhaustive list of possible

track candidates shown below

Segments can be linked
Algorithmic efficiency of built track geometrically
u Q ua d ru p | ets (T4) candidates of no missing hit tracks i oz i 04 0B o

e from PU 200 e from PU 200

:
m Quintuplets (T5) = e o WA

o Create track candidates N — | D/ A

n pT3,pT4 HHE— o,

s T5 o ; p«xelseedsla;;égmems" o
o [MTV-like Validation] 5 ) e
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