
Innovative Algorithms

David Lange and Heather Gray

Major Activities and Goals

Determining charged-particle trajectories
(“tracking”) requires most reconstruction CPU
■ Develop more efficient algorithms
■ Develop more performant algorithms

Capitalize on industry and data science techniques
and tools

■ Investigate new HEP applications of ML
■ Apply new ML techniques to HEP

2

Developing tracking
algorithms for HL-LHC

Exploiting major advances in
machine learning (ML)

Re-engineering algorithms for
hardware accelerators

Hardware accelerators are the way forward to speed up
and reduce infrastructure cost
■ Use of hardware accelerators for tracking
■ ML on accelerators in realistic HEP apps

Current Projects

One goal for this retreat:
update our webpages!

PV Finder

PI: Mike Sokoloff

PV Finder: Plans for Year 4

Explore PVFinder
for ATLAS (w.
Tompkins)

ACTS: Seeding on ATLAS ITk
6

ATLAS ITk geometry in ACTS

ttbar events with mu = 200

Further tuning required to reduce
duplicates in the endcaps

Excellent efficiency

Preliminary results for seeding performance
(pt>500 MeV)

- 92% efficiency
- 65% fake rate

Two papers in advanced preparation
(expected to be submitted this spring)

- A Common Track Software (ACTS)
- A GPU based Kalman Filter for

High-Energy Physics Experiments

PIs: Heather Gray and
Lauren Tompkins

ACTS: Improving Seeding & Vertexing
7

Technique from
D. Emelianov
and TrackML
Challenge

Layer Linking for Pixel Seed Finding
- Pixel layers are linked together based on probability learned

from simulation
- In the absence of any other requirements, layer links reduce

combinatorics by 50%
- Applying cuts to seeds reduces impact. Currently exploring

application to more layers to maximize impact

Integrated ACTS vertexing algorithms into Athena:
- Gaussian Track Density Seed Finder
- Full Billoir Vertex Fitter
- Iterative Vertex Finder

ACTS version shows same physics results
but with a significant CPU time reduction

ACTS Athena Tracking Integration Task Force Launched in
March … first results from track fit last week

ACTS: Evolutionary Algorithms automatically
optimize track seeding parameters
Tracking often requires extensive hand tuning of parameters

Developed strategy based on evolutionary algorithms (EA) to
optimize track seeding parameters automatically.

Tested on ACTS generic detector (collider) and LDMX detector
(fixed target).
■ Improved efficiencies, lowered duplicate and fake rates in

both cases
■ EA worked best compared to hand tuning or automated

parameter scan
■ Plan to apply to ITK geometry

Paper accepted for vCHEP2021

8

Work of IRIS-HEP fellow &
undergraduate Peter Chatain

ACTS Plans
● Core is moving rapidly towards deployment and commissioning over the next year (partnership with

USATLAS)
○ Tuning ACTS tracking algorithms for ITk
○ ACTS tracking integration into athena

● R&D Directions
○ Tracking on accelerators

■ End-to-end tracking on GPUs with traccc (w/ USATLAS and HEP-CCE)
○ Machine-learning for tracking

■ Evolutionary algorithms for algorithmic tuning
■ Developing a library of various implementations to facilitate comparisons

● Layer-linking for pixel seed finding
● spotify bucket algorithm (fellow project)

■ Test LHCb PV-finder for ACTS generated ATLAS geometry, possibly port to ACTS
(collab with M.Sokoloff, DIANA-HEP fellow)

○ ACTS exploration and testing for other experiments continues
■ LDMX, Belle-2, sPhenix, muon collider, EIC?

GPU trigger for LHCb: Allen

PI: Mike Williams

Allen monitoring goal for Run 3
Remove dedicated monitoring thread
Thread-safe counters/histograms filled from individual threads

Parallelized & Vectorized KF Tracking (mkFit)

● Extended infrastructure to support multiple iterations, including hit masking.
○ Triggered a major re-structuring of hit format to be identical to that used in CMSSW,

thereby minimizing reformatting overhead.
● Work on the CMSSW side to:

○ Configure mkFit
○ Accept tracks built by mkFit, fit and store in track collection
○ Run standard CMS track validation module
○ Performance results to be included in HLT TDR (to be submitted to LHCC in summer)

● Aiming for Run 3 tracking configurations using mkFit into next major CMSSW release
cycle (12.X)

PIs: Peter Wittich,
 Avi Yagil

Line Segment Tracking – LST
● Novel tracking algorithm designed and developed targeting GPUs.

○ Based on Phase-2 CMS tracker geometry.
○ Achieved good efficiency for PU200

● Current work focused on reducing linking
combinatorics (redundancy in track building)

● Development on CPU, “mirrored” to GPU
○ Common framework and repository for both
○ Common validation suite, ~identical results

(up to precision)
● Working to reduce memory footprint on GPU
● Testing various schemes (e.g. unified vs

explicit allocation as well as nested parallelism,
vs grid allocation)

● Technique also included in HLT TDR for HL-LHC

Plans for years 4 & 5
● mkFit Run3 related:

○ Run 3 integration / testing / deployment
○ Cleanup and consolidate implementation “shortcuts” physics tuning

● mkFit Phase2 related:
○ Adjust to phase-2 geometry, test, and adjust as needed

■ Usage of min-doublet?
■ Usage of patatracks as seeds?

● SLT related:
○ Continue development with emphasis on timing and memory footprint
○ Deployment into CMSSW and testing performance in-situ

For both: keep am eye on HW (e.g. AMD) as well as SW developments (e.g. One API by Intel)

GNN Tracking: Y3 Accomplishments

Left: graph construction edge
efficiency (true edges/all edges)
for range of pt for 3 different
algorithms
Right: track finding efficiency
(using DBScan and UnionFind)
for the IN architecture (found
track counted if >50% of hits are
from the same particle and >50%
of main particle’s truth hits are
included)

● Data Augmentation:
○ Added end-caps to graphs using TrackML dataset (other projects are barrel only) [UIUC]
○ Added edge features to Interaction Network (IN) [Princeton] and edge classifier network [UIUC]

■ Demonstrated improved performance (faster convergence, higher accuracy) using simple edge parameters (phi, eta, dr, dR)
■ Hough Transform accumulator was most useful edge feature for edge classifier network but at very high computational cost

● Graph Construction
○ Converted ExaTrkX graph construction code from Pytorch to Pytorch Geometric [UIUC]
○ Standardized code to measure graph construction edge efficiency and truth efficiency [Princeton]
○ Implemented DBScan-based graph construction in Cartesian and eta-phi space (achieved improved graph efficiency) [Princeton]

● Network Architecture Improvements
○ Achieved 99.7% edge classification efficiency and 85-94% tracking efficiency with ~6,000 learnable parameter IN (substantially

smaller than previous architectures) [Princeton]
○ Implemented a instance segmentation based architecture to allow one-shot tracking [Princeton]

PIs: Peter Elmer,
Mark Neubauer

Y3 Accomplishments Cont
● Tracking efficiency measurements

○ Defined 3 tracking efficiency working points (clustering, ExaTrk (see previous slide) and full match) [Princeton, UIUC]
○ Measured efficiency of UnionFind and DBScan track finding for IN and edge classifier [Princeton, UIUC]

● FPGA-based GNN Acceleration
○ Implemented first GNN in HLS for particle physics using hls4ml [UCSD]

■ Small graphs (pt>2GeV, 1/16 graph), 5 ns clock periods, good performance at <12,6> bit precision
■ Implementing user-friendly front-end code into hls4ml (Pytorch Geometric GNNs) [UCSD]

○ Implemented OpenCL-based GNN inference, data transfer latency is a large bottleneck [Princeton]
● Publications and (Selected) Talks

○ Papers: “Charged particle tracking via edge-classifying interaction networks” (vCHEP 2021), “Instance Segmentation for One-Shot
Conformal Tracking at the LHC” and “Accelerated Charged Particle Tracking with GNNs on FPGAs” (NeurIPS ML4PS 2020)

○ Talks: FastML for Science, Accelerated AI for Big-Data Experiments, IML Conference, ML4SYS GNN Workshop Keynote

Left: tracking efficiency with UnionFind for edge-classifier network vs pt (far left) and eta (center left)
Right: AUC (center right) and resource utilization breakdown (far right) for hls4ml implementation of IN on FPGA

https://github.com/fastmachinelearning/hls4ml
https://arxiv.org/abs/2103.16701
https://arxiv.org/abs/2103.06509
https://arxiv.org/abs/2103.06509
https://arxiv.org/abs/2012.01563
https://indico.cern.ch/event/924283/contributions/4105258/
http://www.ncsa.illinois.edu/Conferences/AcceleratedAINCSA/presentations.html#dezoort
https://indico.cern.ch/event/852553/timetable/#5-accelerated-pixel-detector-t
https://mlsys.org/virtual/2021/workshop/1642

Vision for Y4 and Y5
● Planned improvements to FPGA implementations (Y4)

○ Scale to larger graph size [Princeton, UCSD]
○ Optimize matrix multiplication kernels in OpenCL [Princeton]
○ Explore pruning and QAT to reduce model size [UCSD]
○ Implement graph construction on FPGA to bypass data transfer bottleneck [Princeton]

● Efficiency comparisons to current tracking algorithms (Y4) [Princeton, UIUC, UCSD]
○ Measure inference time on different computing systems
○ Define comparable tracking efficiency working point (possibly consider parameter resolution)

● Evaluate GNN architectures with experimental data (Y4, Y5)
○ CMS data test in collaboration with TrackingPOG (organizing hackathon) [Princeton]
○ ATLAS data test in collaboration with ExaTrkX [UIUC]
○ Emulate real tracking environment for hardware acceleration [UCSD]

● Explore GNN architecture extensions and improvements (Y4, Y5)
○ Enforce invariance/equivariance to expected symmetries in learned GNN convolutions [Princeton]
○ Test different localization bounding shapes and optimize tracking branch for instance segmentation

network [Princeton]
● Extend and improve ML Particle Flow algorithm [UCSD] (Y4, Y5)

○ Analyze graph structure towards interpretable/explainable model
○ Accelerate inference with co-processor as a service

HCal with GPU Trigger

PI: Phil Harris

ML4Jets: Y3 Accomplishments
Reframed various problems in jet physics in
terms of hierarchical clustering.

Partnered with researchers at NIST, UMass
Amherst, Google Research on probabilistic
treatment of hierarchical clustering.

● Data structures and algorithms that allow
us to efficiently search through search
spaces as large as 10300

● Papers at accepted AISTATS, NeurIPS, &
vCHEP. Submitted to UAI & snowmass

● Software implementations (python)
● Fellows project to implement in Julia

Pi: Kyle Cranmer

ML4Jets: Vision for Y4/Y5 Impact
Other grants that have mainly supported Sebastian end in August
2021. Request to extend to Dec. 21 (or longer) at 100%

Would like to use Y3 developments to demonstrate that it is
possible to fit parameter of parton shower model summing over
all possible jet clusterings weighted appropriately.

Develop “parameterized trellis” connecting to VAE like models for
trees

Explore integration of algorithms with FastJet or other Jet
clustering tools

Longer term (who?):

● Extend algorithms to 2->3 splitting to aid in ML/PS
matching bottleneck for high jet multiplicity event
generation

● demonstrate use of probabilistic programming to efficiently
populate tales of phase space (eg. QCD faking a boosted
jet tagger)

Proof of principle: using prob. prog. to populate tails

snowmass:

vCHEP:

Milestones

Many of our milestones are due during the next 6 months

Backup

LST - Algorithm Overview
○ Load hits
○ Make mini-doublets (MD)
○ Make segments (LS)

■ Import pixels (pLS)
○ Create tracklets

■ Triplets (T3)
■ Quadruplets (T4)
■ Quintuplets (T5)

○ Create track candidates
■ pT3, pT4
■ T5

○ [MTV-like Validation]

4/23/21 Segment Linking 23

