Anti-nuclei at the LHC and in cosmic rays Nuclei@LHC expression of interest

Alexander Kalweit (CERN) JENAA meeting 2nd October 2020

Production of anti- and hyper-nuclei in the cosmos

Slide taken form L. Serksnyte (TUM)

Dark matter and anti-nuclei

Signal: anti-nuclei from dark matter

 $\begin{array}{l} \chi + \bar{\chi} \leftrightarrows f + \bar{f}, W^+ + W^-, \dots \\ \leftrightarrows \bar{p}, \bar{d}, \overline{He}, \gamma, \dots \end{array}$

 \rightarrow Measured by AMS, GAPS, BESS,...

Background: anti-nuclei from ordinary matter

 $\begin{array}{l} p+p,p+He,He+He,\ldots\\ \leftrightarrows \bar{p},\bar{d},\overline{He},\gamma,\ldots\end{array}$

→ Measured at accelerators by ALICE, LHCb, NA-61,...

anti-nuclei cosmic ray flux near earth

[[]https://antideuteron.com (GAPS)]

[[]https://antideuteron.com (GAPS)]

[[]arXiv:2002.04163v2]

Slide taken form L. Serksnyte (TUM)

The path of anti-nuclei to Earth

$$\nabla \cdot (-K\nabla N_{\bar{d}} + V_c N_{\bar{d}}) + \partial_t (b_{tot} N_{\bar{d}} - K_{EE} \partial_t N_{\bar{d}}) + \Gamma_{ann} N_{\bar{d}} = q_{\bar{d}}$$

Source term:

Depends on coalescence models for anti-nuclei formation that can be **tested at accelerators**

Propagation term:

Common to all antiparticles (propagation codes, e.g. GALPROP)

Annihilation term:

Known for antiprotons and can be **measured at the LHC**

Hadronic interaction of anti-nuclei with interstellar matter

 \rightarrow What is the mean free path of anti-nuclei in the galaxy?

Production of anti- and hyper-nuclei at accelerators

Anti-nuclei at the LHC

While anti-nuclei are still not seen in space, we see them abundantly at the LHC!

We can study their production and their properties in great detail.

At LHC energies, particles and anti-particles are produced in equal abundance at mid-rapidity.

Anti-(hyper)-nuclei up to A=4 are currently in reach at accelerators. Anti-hyper-nuclei of mass A=5 and anti-nuclei of mass A=6 will become in reach in the long term future.

Zoo of exotic QCD bound states reachable at LHC

Understanding anti-nuclei production: penalty factor

The production yield of (anti)-nuclei decreases at the LHC by a factor of about ~350 for each additional nucleon in Pb-Pb (~1000 in pp).

The penalty factor in the universe

Samuel Ting, CERN Colloquium 24th May 2018

Observations on ⁴He 1. We have two ⁴He events with a background probability of 3×10⁻³.

- Continuing to take data through 2024 the background probability for ⁴He would be 2x10⁻⁷, i.e., greater than 5-sigma significance.
- The ³He/⁴He ratio is 10-20% yet ³He/⁴He ratio is 300%. More data will resolve this mystery.

Coalescence parameters B_A

 (anti-)nuclei production by coalescence of (anti-)protons and (anti-)neutrons which are close by in momentum and configuration space. Roughly speaking: "deuteron α proton x neutron => deuteron α proton²"

$$E_{\rm d} \frac{{\rm d}^3 N_{\rm d}}{{\rm d} p_{\rm d}^3} = B_2 \left(E_{\rm p} \frac{{\rm d}^3 N_{\rm p}}{{\rm d} p_{\rm p}^3} \right)^2 \qquad \mathbf{\overline{p}}$$

 Quantum-mechanically correct: overlap of the source function (e.g. pp collision) with the Wigner-function (and thus the wave-function) of the produced nucleus:

$$\gamma \frac{dN_{\rm d}}{d^3 \mathbf{P}} = \frac{2s_d + 1}{(2\pi)^3} \int d^4 x_1 \int d^4 x_2 \int d^4 x_1' \int d^4 x_2' \Psi_{d,P}^*(x_1', x_2') \Psi_{d,P}(x_1, x_2) \underbrace{\rho_{p_1, p_2}(x_1, x_2; x_1', x_2')}_{P_{1, p_2}(x_1, x_2; x_1', x_2')} \underbrace{\rho_{p_1, p_2}(x_1, x_2; x_1', x_2')}_{P_{1, p_2}(x_1, x_2; x_1', x_2')}$$

Understanding the details of the coalescence process

(a.) system size < deuteron size (b.) system size > deuteron size

sensitive to details of the coalescence process due to their wide wave-function!
 → Their production yields are comparable

→ Their production yields are comparable to anti-nuclei in which they decay resulting in an additional background source in DM searches. 20

Hyper-nuclei and hyperon-nucleon interactions

Hyper-triton wave-function

→ Calculating the hyper-triton wave-function, a crucial input to coalescence studies, requires sophisticated nuclear structure calculations, e.g. based on pionless effective field theory.

$\sqrt{\langle r^2_{\Lambda-NN'} angle}$ [fm]	$\sqrt{\langle r_{N'-\Lambda N}^2 \rangle}$ [fm]	$\sqrt{\langle r_{N-N'\Lambda}^2 \rangle}$ [fm]	$\sqrt{\langle r_{NN'}^2 \rangle}$ [fm]
10.79	3.96	4.02	2.96
+3.04/-1.53	+0.40/-0.25	+0.41/-0.25	+0.06/-0.05
+0.03/-0.02	+0.03/-0.03	+0.03/-0.03	+0.03/-0.04

[Phys. Rev. C 100 (2019) 034002]

(anti-)Hyper-triton binding energy measurements

[STAR, Nature Phys. 16 (2020) 4]

How precisely do we really know the Lambda separation energy in the hyper-triton? \rightarrow Homework for the experimentalists..

(Anti-)Hypertriton lifetime measurement from ALICE

- *m* = 2.991 GeV/*c*², B_∧ = 130 keV → rms-radius = 10.3 fm
- Exclude large deviations from free ∧ life time
- Test of different models with different Hypertriton structure and final state interaction

Outlook and summary

AMS-100

[Talk from Prof. S. Schael at AMS days La Palma: https://www1b.physik.rwth-aachen.de/~schael/AMS-100.html]

→As the only high energy hadron collider experiment for many years to come, the LHC community has the duty to measure and understand anti-nuclei production in an as comprehensive way as possible!

ALICE 3.0

 \rightarrow Complex QCD bound states like anti- and hyper-nuclei could be well studies with a future LHC experiment that is foreseen to replace ALICE in the 2030s.

Extended rapidity coverage: up to 8 rapidity units

Tracker: ~10 tracking barrel layers (blue, yellow and green) based on CMOS sensors Particle ID:

- TOF with outer silicon layers (orange)
- Shower Pixel Detector (outermost blue layer)

Ongoing activities and future prospects

- A rich interdisciplinary physics program awaits us in the upcoming years at LHC (not only in ALICE)!
- A number of nice workshops combining two out of the three communities took already place, for instance:
 - CERN TH institute in May 2020 on anti- and hyper-nuclei bringing together nuclear physics and high energy physics [link].
 - Anti-deuteron workshop bringing together cosmic ray and high energy physics community [link].
 - XSCRC2019 [link]
- We now have to start to truly bring together all three communities simultaneously.
 - A starting point could be the MIAPP workshop in April-May 2021 in Munich [link].

Antiproton in pHe at $\sqrt{s_{NN}} = 110 \text{ GeV}$

Nuclear Physics at the LHC

- High energy LHC experiments provide a unique laboratory for nuclear and hadron physics studies that have a wide breadth of possible applications to astrophysics.
- A very targeted and truly interdisciplinary proposal focused on
 - High precision studies of hyperon-nucleon (Y-N) and hyperon-hyperon interactions → fundamental to study the EoS of neutron stars
 - 2. Formation process and properties of light anti- and hyper-nuclei
 → pivotal ingredient in searches for dark matter in cosmic rays
- Web page: <u>https://indico.ph.tum.de/event/4492/overview</u>

Thank you!