
Alex Pearce

23rd September 2020
LHCb FCC discussion

Run 3 Selections in HLT2

https://indico.cern.ch/event/957228/
https://lhcb.web.cern.ch/lhcb/

Introduction
● LHCb has a very broad physics programme

○ Flavour, electroweak, QCD, exotics, heavy ion and SMOG running, …

● “Flavour physics” is very broad in and of itself
○ Hundreds of interesting decay channels, with varying topologies, across many hadron species

○ Spans wide energy range and large set of discriminatory features

● Cannot write a trigger menu for all of this upfront
● LHCb trigger must cater for analysts wanting to capture things not yet considered

● HLT2 performs full, offline-fidelity event reconstruction on ~1 MHz of HLT1 output
○ Must be maximally efficient and fast

● Selects 10 GB/s of data based on decisions on O(1000) trigger lines, mostly exclusive
○ Must be flexible and easy to use, inspect, and monitor

2

Flexible selections

● All LHCb data-processing applications configured by a Python initialisation layer
● Gaudi algorithms written in a way which allows them to be chained together in Python

○ “Filter these photons and those pions, then vertex them together to form a D0 → π+γ candidate”

● Very expressive filtering based on “functors”

3

(PT > 2 * GeV) & (IP < 2 * mm) & (NINTREE(PIDK > 5) >= 1)

● Creates a function predicate object: accepts a candidate and returns pass or fail
○ Used to filter sets of candidates and therefore make trigger decisions

● Entire selection-writing lifecycle is in Python!
○ Rapid onboarding of new analysts, simpler debugging, no need for compilation step

● (Sidenote: we use the same functor framework for making ntuples, which means less to
learn and reduces inconsistencies between online and offline definitions)

Lessons learnt in HLT1

● Spent around 2 years speeding up HLT1
● Incredible return on investment →
● What did we learn?

○ Maximise CPU cache usage
○ Exploit parallel

architectures/instruction sets
○ Minimise pointer and function call

indirection
● Integrating these lessons into our

selection framework today: ThOr,
throughput-oriented functors!

● Similar selection interface, so analysts
get speed for free 😎

4

LHCb-FIGURE-2020-007

https://cds.cern.ch/record/2715210

No “experts” please

● Majority of HLT2 lines are defined, written, & maintained by the physics working groups
○ Really important for maintainability; do not want a tiny group responsible for all the physics

○ Focuses ‘core’ developers on building a system that is accessible to all, e.g. should not require

expert knowledge to maintain throughput

5

Flexible applications

● Configuration O(1000) selections is non-trivial
● They are logically independent, but in practice we want them to share expensive pieces

such as the reconstruction
● Also want to process multiple events at once in multi-threaded applications
● Developed a new scheduler to cleanly separate two concepts:

○ Control flow, which ultimately determines the trigger decision

○ Data flow, which algorithms must be run to satisfy data dependencies

● Individual algorithms idempotent, acting on immutable inputs
● New configuration logic deployed in parallel, PyConf, encourages small, encapsulated

configuration fragments to increase debuggability: super helpful in an online setting

6

https://cds.cern.ch/record/2699545

Considerations for future experiments

● We’re making these changes after very successful operation since 2010
○ Lots of lessons learnt from a specific set of experiences

● Optimising for runtime speed and configuration safety and clarity
● Experiments in an exploratory phase have very different priorities and so may benefit

from different or hybrid approaches
● Still, we think we’re doing a lot of cool things and would love to see others digging it too!

7

End

8

