Delphes card for muon collider

Michele Selvaggi

CERN

Delphes in a nutshell

- Delphes is a modular framework that simulates the response of a multipurpose detector in a parameterised fashion
- Includes:
 - pile-up
 - charged particle propagation in B field
 - EM/Had calorimeters
 - particle-flow
- Provides:
 - leptons, photons, neutral hadrons
 - jets, missing energy
 - heavy flavour tagging
 - designed to deal with hadronic environment
 - well-suited also for e+e- studies
 - detector cards for: CMS (current/PhaseII) ATLAS LHCb FCC-hh -ILD - CEPC - FCCee (IDEA/CLD) - CLICdet

Detector Simulation

Full simulation (GEANT):

Université catholique le Louvain

- simulates all particle-detector interaction (e.m/hadron showers, nuclear interaction, brem, conversions)
- Experiment Fast Simulation (ATLAS, CMS ..)
 - simplify geometry, smear at the level of detector hits, frozen showers
- Parametric simulation (**Delphes**, PGS):
 - parameterise detector response at the particle level (efficiency, resolution on tracks, calorimeter objects)
 - reconstruct complex objects and observables(use particle-flow, jets, missing ET, pile-up ...)
- Ultra Fast (ATOM, TurboSim):
 - from parton to detector object (smearing/lookup tables)

10-2 - 10-1 s/ev

Parametric simulation paradigm

- Why fast parametric detector simulation?
- Easily scan detector parameters
- Reverse engineer detector that
 maximises performance
- Preliminary sensitivity studies
 for key physics benchmarks

 \rightarrow (usual) paradigm adopted in the context of FCC studies

Philosophy

 The interest in the TH/pheno community is to assess the physics reach at the highest possible energies sqrt(s) = 10, 14, 30 TeV

(at any rate, such a detector would perform great also at 1.5, 3 TeV)

- Need to be able to reconstruct: mu, ele, jets, tops, V up to $p_T = 15 \text{ TeV}$
 - $\mu \mu \rightarrow \mu \mu$, e e , j j, t t~ (hadronic) ,VV (hadronic)
 - $\mu \mu \rightarrow \text{EW-inos, stops} \rightarrow \text{SM}$

With many respects, the constraints from physics at high p_T are similar: to the **FCC-hh** and **CLIC** (also easier to start from existing detector concept)

→ delphes card for muon collider is an **hybrid** of the FCC-hh and CLIC cards

Philosophy

- **Goal** of the Delphes card (and physics studies):
 - **define a target** for the detector performance (free of BIB)
 - study benchmark physics channels with target performance
 - study impact of variations of detector performance around nominal on physics
 - iterate on detector design

BIB vs FCC-hh

charged fluence: 400-700 (cm⁻² / BX)

Barrel layer:	1	2	3	4	5	6
Average radius [mm]	25	60	100	150	260	380
Maximum fluence [cm ⁻²]	328.1	79.7	35.1	16.9	6.8	3.3
Module occupancy [%]	1.63	0.39	0.18	0.10	0.28	0.15
Data size per bunch crossing [Mb]	56.60	37.66	28.51	23.46	10.95	8.72
Data rate [Tb/s]	2263.1	1506.4	1140.3	938.5	438.0	348.6
Data rate density @ 40 MHz [Gb/s/cm ⁻²]	944.0	229.6	107.0	60.2	14.8	8.0
Data rate density @ 1 MHz [Gb/s/cm ⁻²]	23.6	5.7	2.7	1.5	0.4	0.2
	7	8	9	10	11	12
FCC-hh	530	742	937	1132	1327	1540
	1.9	0.83	0.46	0.26	0.16	0.13
	0.09	0.04	3.0	1.9	1.3	0.9
	835.5	537.8	331.3	249.0	192.8	109.5
	20.8875	13.445	8.2825	6.225	4.82	2.7375
	5.1	2.4	1.2	0.7	0.5	0.2
	0.1					

Table 5: Summary of maximum fluence [cm⁻²], module occupancy, data size per bunch crossing [Mb/s], data rates [Tb/s] and data rate densities [Gb/s/cm⁻²], as estimated for the nominal FCC-hh pile-up of 1000 events and tracker in flat layout [28].

charged fluence: 330 (cm⁻² / BX)

At MuonCollider can afford low power pixel sensors thanks to low BX rate (70 kHz) e.g MAPs (30 μ m x 30 μ m):

 \rightarrow occupancy: 0.6% (700 / (1cm² / 30 μ m²)) ~ 2x HL-LHC or 0.5x FCC-hh

But ... non pointing background!

Particle Propagator/DTF

Propagate particles in cylinder module ParticlePropagator ParticlePropagator { set InputArray Delphes/stableParticles set OutputArray stableParticles set ChargedHadronOutputArray chargedHadrons set ElectronOutputArray electrons set MuonOutputArray muons # radius of the magnetic field coverage in the calorimeter, in m set Radius 1.5 # half-length of the magnetic field coverage in the calorimeter, in m from CLIC set HalfLength 2.31 # magnetic field, in T set Bz 4.0 # Dense Track Filter ******************* efficiency 8.0 module DenseTrackFilter DenseTrackFilter { set TrackInputArray DenseMergeTracks/tracks 0.6 set TrackOutputArray tracks $\sigma_{\mu} = 0.001$ set ChargedHadronOutputArray chargedHadrons $\sigma_{\theta} = 0.002$ • $\sigma_{\theta} = 0.003$ set ElectronOutputArray electrons 0.4 • $\sigma_{\theta} = 0.005$ • $\sigma_{0} = 0.01$ set MuonOutputArray muons 0.2 from FCC-hh set EtaPhiRes 0.003 QCD jets, $p_{T} = 5 \text{ TeV}$ set EtaMax 2.5 0 -2-1 $\log \Delta R(\text{jet,track})$

Tracking efficiency/resolution

inspired from FCC-hh

Calorimeters/PF

E/mu/gamma efficiency

inspired from CLIC det

BTagging (Medium Working point)

inspired from CLIC det

Tau-tagging

inspired from CMS/FCChh

Forward muon collection

Muon Collider card

******** # Order of execution of various modules # Muon Collider Detector TARGET model # # Michele Selvaggi michele.selvaggi@cern.ch set ExecutionPath { # Ulrike Schnoor ulrike.schnoor@cern.ch ParticlePropagator TrackMergerProp # ± DenseProp # !!! DISCLAIMER !!! DenseMergeTracks DenseTrackFilter # The parameterisation of the Muon Collider ChargedHadronTrackingEfficiency # has to be intended as a target performance. ElectronTrackingEfficiency # This has not been validated by full simulation. MuonTrackingEfficiency # Hybrid between FCC-hh and CLIC performance. ChargedHadronMomentumSmearing ElectronMomentumSmearing ********* MuonMomentumSmearing

- "Final" v0 can be found here:
 - <u>https://github.com/delphes/delphes/blob/master/cards/delphes_card_MuonColliderDet.tcl</u>
 - <u>https://github.com/delphes/delphes/tree/master/cards/MuonCollider</u>
- Added:
 - Forward muon collection
 - Jet Substructure
 - Validation

Comments

• The performance that has been encoded in the Delphes muon collider card is to be intended as a "target" performance for the highest possible energy

However (disclaimer):

- Nothing will be written in stone, should be intended as a moving target
- Users should explore variations around target performance to assess sensitivity of physics reach as a function of particular detector choices, and impact of beam induced background