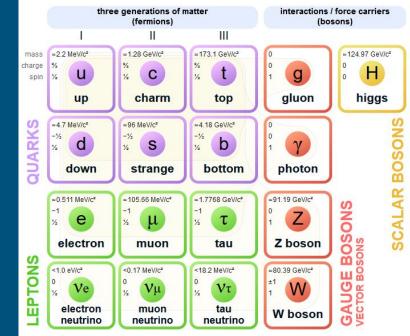
Neutrino-nucleon cross section sensitivity at FASERv General Examination

> John W. Spencer University of Washington 22 September 2020

Supported by:

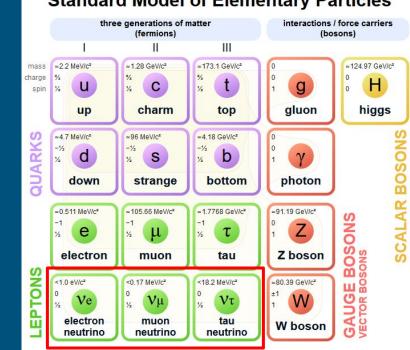
Outline

1. Introduction


- 2. Monte Carlo simulation
- 3. Reconstruction algorithm
- 4. Combined performance
- 5. Neutrino-nucleon cross sections
 - Background
 - Systematics
 - Sensitivity
- 6. Future work

My contributions since joining FASER/FASERv (Dec 2019)

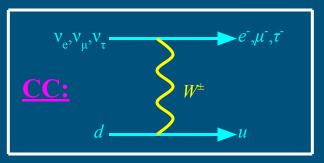
Background - Physics Standard Model (SM)

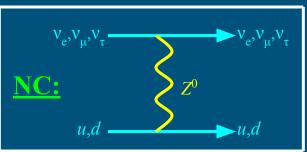

- 12 particles of matter
- 6 quarks (u,c,t,d,s,b)
- 3 charged leptons (e,μ,τ)
- 3 neutrinos (v_e, v_μ, v_τ)

Standard Model of Elementary Particles

Background - Physics Neutrinos

- The most elusive particles in the Standard Model (SM)
- First postulated by Enrico Fermi ~1932
 - First discovered in 1956 at nuclear reactor
- No collider-produced neutrino has ever been detected
- Many big questions about neutrinos:
 - Neutrino mass / oscillations / CP violation
- For all of these, we need to know how the neutrino interacts with the detector
 - How strongly do neutrinos interact with nucleons?

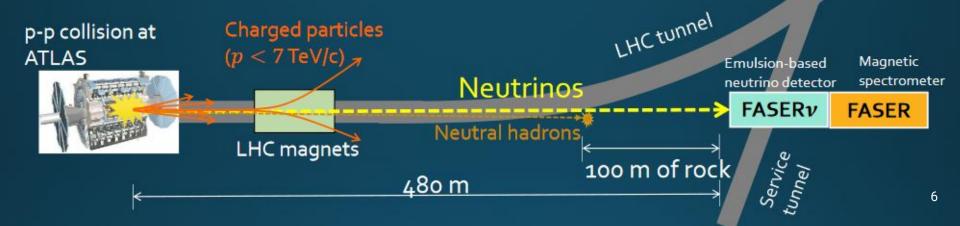



Standard Model of Elementary Particles

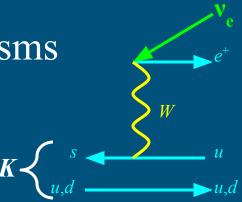
Background - Physics Neutrino-nucleon interactions

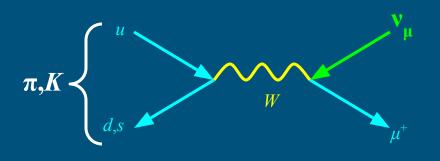
• Nucleon: Generic name for proton or neutron

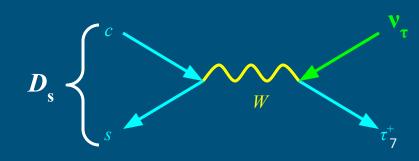
- Composed of three quarks
- Proton: *uud*
- Neutron: *udd*
- Neutrinos:
 - \circ Not quarks/antiquarks \Rightarrow no strong interactions
 - \circ Electrically neutral \Rightarrow no EM interactions
- Can undergo two types of weak interactions
 - Charged current (CC, top-left)
 - Neutral current (NC, top-right)
- Scattering can be
 - Elastic / Quasi-Elastic (< 20 GeV)
 - Deep Inelastic (> 20 GeV)



Background - Physics Production and propagation of neutrinos

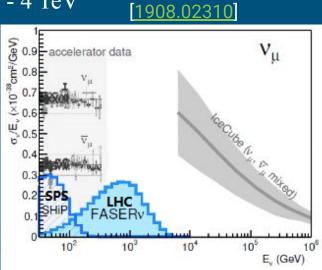

• LHC uses *pp* collisions

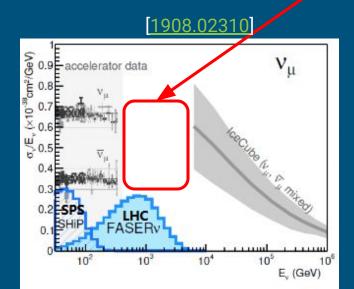

- Beams collide at ATLAS interaction point, producing many hadrons (e.g. π , *K*, *D*) in forward region
- Decay products at IP include charged particles and neutrinos
- \circ Charged particles (E < 7 TeV) deflected via LHC magnets
- Neutrinos propagate through 100 m of rock to FASERv 480 m away from ATLAS IP [ICHEP 2020]



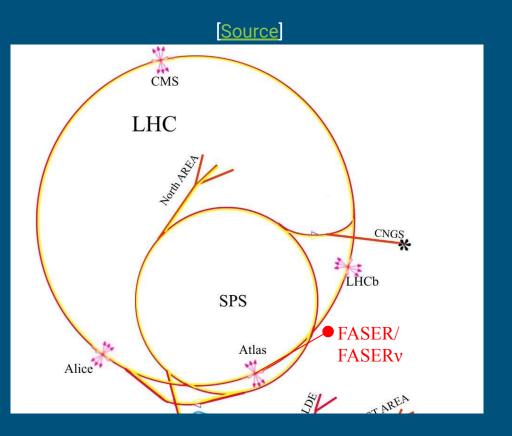
Background - Physics Flavour-specific production mechanisms

- Dominant sources of collider neutrino production:
 - v_{a} : Semileptonic kaon decays $K \rightarrow \pi e v_{a}$
 - ν_μ: Leptonic decays π,K→μν_μ ν_τ: Leptonic decays D_s→τν_τ

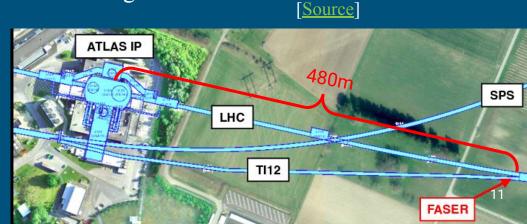



Background - Physics Existing neutrino interaction cross section data

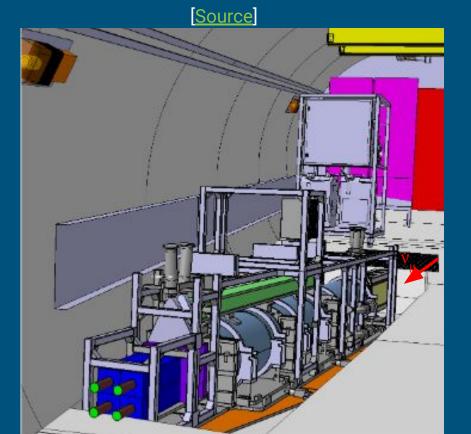
- We know neutrino-nucleon cross sections
 - Below 300 GeV (accelerator data)
 - Above 4 TeV (Cosmic neutrinos at IceCube)
- Gap between 300 GeV 4 TeV


Background - Physics FASERv and the neutrino cross section frontier

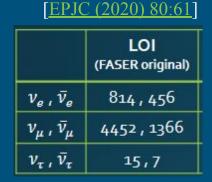
• FASERv: Unique opportunity to measure cross sections in this energy region


Background - Facilities CERN

- 27 km underground particle accelerator on border between France and Switzerland
- Accelerates protons/antiprotons in opposite directions to 7 TeV

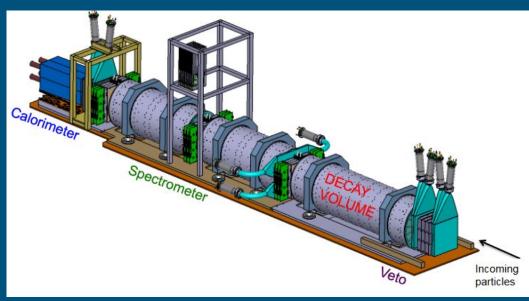

Background - Facilities FASER - the ForwArd Search ExpeRiment

- Detected cosmic neutrinos but no collider-produced neutrino has ever been detected
 - Extremely suppressed cross section for interaction with nucleons
- Being neutral elementary particles, they are unaffected by magnetic fields
- Travel in straight lines from the interaction point (IP)
- Kinematics: Lines are tangent to the collider ring
- Existing maintenance tunnel: TI12


Background - Facilities TI12 maintenance tunnel

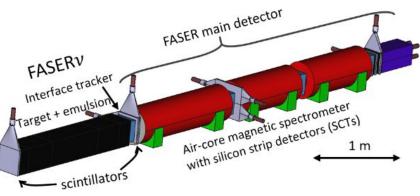
Background - Detectors Design philosophy

- Charged leptons: Deflected with magnetic field (cyclotron motion)
 - In uniform B-field, positively (negatively) charged leptons follow right-(left-)handed helices
- Our detector must have sufficient resolution to identify two closely spaced oppositely-charged tracks (300 µm)
- Calorimeter needed for μ , *e* tagging
- Neutrinos: Need dense target (e.g. lead, tungsten)



Background - Detectors FASER design

- Small detector to be installed in TI12 maintenance tunnel
- Three tracking stations
 - 3 tracker planes / tracking station
 - 8 SCT modules / tracker plane
 - SCT modules tilted relative to each other


<u>Source</u>

Background - Detectors FASERv

- FASERv will be able to record <u>but not distinguish</u> neutrino and antineutrino interactions
- Measure <u>average cross sections</u> for neutrino and antineutrino interactions
- Emulsion detector containing alternating tungsten plates and emulsion layers to detect collider neutrinos
- Placed upstream from FASER
- Will detect collider-produced neutrinos for the first time
- Dimensions: $0.25m \times 0.25m \times 1.15m$
- FASERv will be placed upstream of FASER
- Will be able to distinguish 3 flavours of neutrinos
- Can also identify charmed/beautiful hadrons

<u>[1908.02310]</u>

Background - Facilities FASER - participants

• UW contribution to FASER:

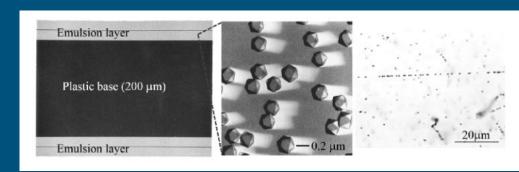
• Offline software: Reconstruction and tracking

Shih-Chieh Hsu

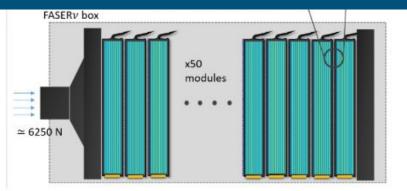
The FASER Collaboration consists of

64 members from 18 institutions and 8 countries

Jeffrey Gao

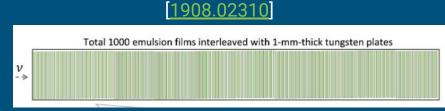

John Spencer

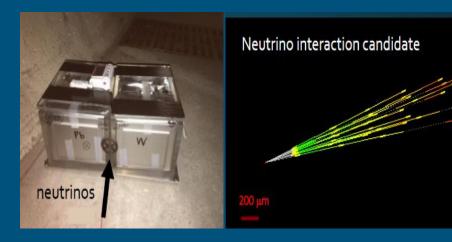
Ke Li


Background - Detectors Emulsion detector - principles

- Emulsion films: 50 µm layer of emulsion gel of AgBr crystals either side of plastic base
- Charged particle ionization recorded and can be amplified and fixed by chemical development of film
- Track position resolution ~ 50 nm
- Angular resolution ~ 0.35 mrad

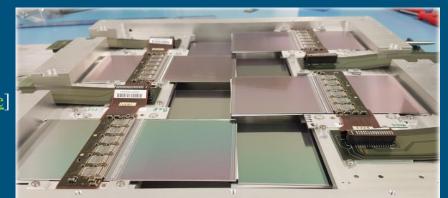
Source


Source



Background - Detectors Emulsion detector - design

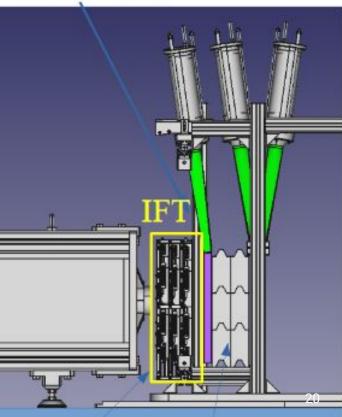
- Layers of tungsten plates, base and emulsion films (top)
- Tungsten film thickness = 1 mm
- Base thickness = 0.2 mm
- Emulsion film thickness = $0.05 \text{ mm} \times 2$
- Original design had 1000 layers
- Revised design:
 - 760 layers
 - Front veto (to eliminate μ entering FASERv)
- Already have pilot run (bottom-left)
 - 30-kg detector
 - Collected 12.5fb⁻¹ data Sep-Oct 2018
 - Reconstructed 11 vertices / 3 neutrino events
 - Event display shows v CC candidate (bottom-right)



Background - Detectors Tracker

- Silicon strip detectors (left)
 - Uses spare semiconductor tracker (SCT) modules from ATLAS
 - 128 channels to record strip hits
- 8 SCT modules per tracking plane (center)
- 3 tracking planes per station (right)
- 3 tracking stations in FASER

[Source]

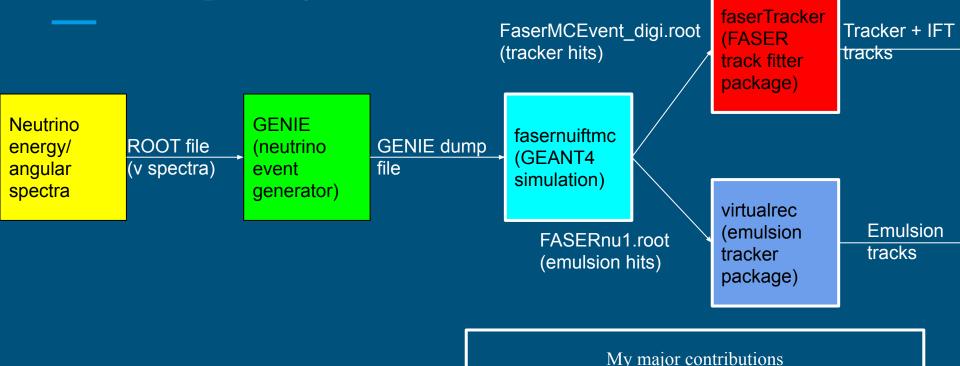


Background - Detectors Interface Tracker (IFT)

- Fourth tracking station placed between FASER and FASERv
- Measures charge and momentum of particles
- Muons leave helix-like tracks in tracker + IFT
- From handedness of track, we can identify μ^+ vs. μ^-
- With lepton number conservation, we can determine if a particle interacting in FASERv was a v_{μ} or \bar{v}_{μ}
- With FASERv+IFT, we have sensitivity to neutrino and antineutrino cross sections <u>separately</u> (not just the average)

Source

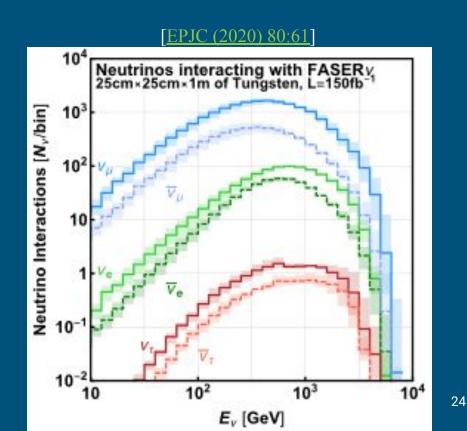
Single Scintillator layer in front of absorber


Background - Detectors Scintillator

- Used to veto incoming charged particles
 - Very high efficiency
- Triggering
- Timing measurement (resolution ~ 1 ns)

Software packages / modules flowchart

Outline


1. Introduction

- 2. Monte Carlo simulation
- 3. Reconstruction algorithm
- 4. Combined performance
- 5. Neutrino-nucleon cross sections
 - Background
 - Systematics
 - Sensitivity
- 6. Future work

My contributions since joining FASER/FASERv (Dec 2019)

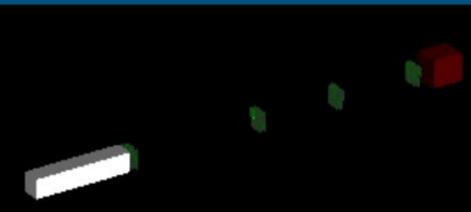
FASER MC Simulation Neutrino spectrum

- Start from incoming neutrino flux data
- Prepare ROOT histogram of neutrino energies based on text files

FASER MC Simulation GENIE

[http://www.genie-mc.org/]

- Event generator to model neutrino interactions with matter
 - GEANT4 simulation does not model properly
 - Use GENIE to generate events with appropriate spectra
 - With GENIE, can force neutrinos to interact



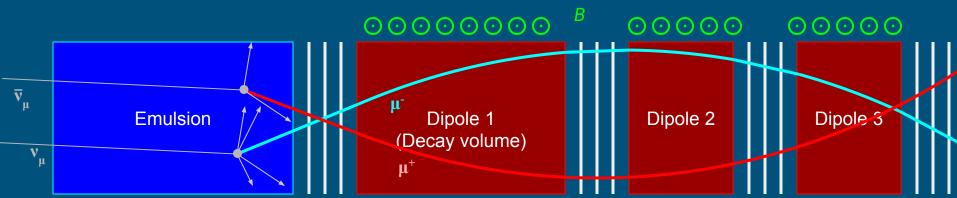
FASER MC Simulation GEANT4

[Source]

- <u>GE</u>ometry <u>ANd</u> <u>Tracking</u>
- Simulates the passage of particles through matter
- Load detector geometry, then generate events using full detector simulation
- I modified and updated GEANT4 detector geometry:
 - Implements IFT as 4th SCT tracking station
 - Uses non-uniform spacing between tracking stations
 - Includes FASERv emulsion detector
 - <u>https://gitlab.cern.ch/jwspence/fasernuiftmc</u>

Outline

1. Introduction


- 2. Monte Carlo simulation
- 3. Reconstruction algorithm
- 4. Combined performance
- 5. Neutrino-nucleon cross sections
 - Background
 - Systematics
 - Sensitivity
- 6. Future work

My contributions since joining FASER/FASERv (Dec 2019)

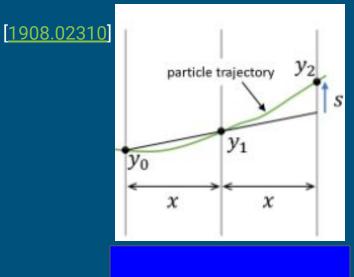
Reconstruction Algorithm Neutrino/Antineutrino ID w/IFT+Tracker

- Magnetic field in dipole volumes only (no B field in tracking stations)
- Without IFT, tracking station and FASERv are separated by decay volume
- With the IFT placed directly between FASERv and FASER, tracks in FASERv will register hits in IFT
- IFT+FASER can construct particle tracks \rightarrow Charge ID from helix chirality
- Positive (negative) charge in IFT \rightarrow neutrino (antineutrino) in FASERv
- Only possible for $v_{\mu\nu}$

• Electrons (τ) scatter (decay) before reaching IFT

Reconstruction Algorithm Schematic of v_{μ} CC event

- Emulsion reconstruction
- Tracker reconstruction
- Emulsion-IFT matching

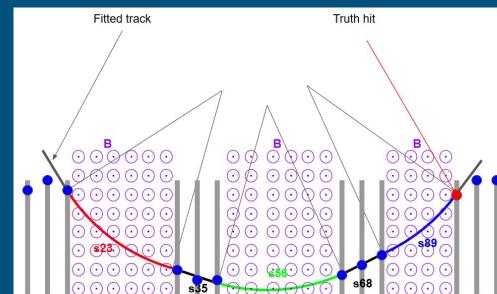

Reconstruction Algorithm Emulsion reconstruction

- Use hits in emulsion films to reconstruct tracks
- No B field in emulsion detector \Rightarrow straight line fitting
- Emulsion reconstruction efficiency:
 - Proportion of v events with ≥ 1 reconstructed track
 - $\epsilon_{\text{Emulsion}} = 0.951 \pm 0.021$

Reconstruction Algorithm FASERv vertex and energy reconstruction

- Energy reco from multiple Coulomb scattering
 - Particle trajectory deflected by s due to MCS
 - Fit *s* to function of momentum
 - \circ P(best fit) = reconstructed momentum
- Vertex ID: Find vertices w/ \geq 5 charged tracks
- Lepton ID: Identify $v_e / v_\mu / v_\tau$ CC events
 - $\circ v_{e}$: EM showers
 - \circ v_u : Track topology
 - v_{τ} : Displaced decays with kink

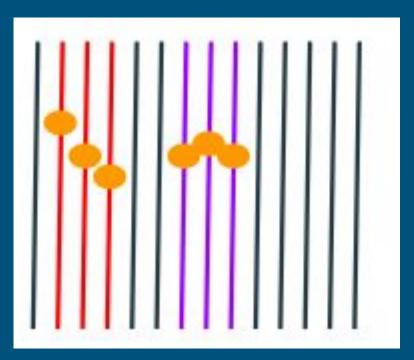
Reconstruction Algorithm Tracker reconstruction


- Use hits in 12 tracker planes to reconstruct μ^+/μ^- in tracker
- We will determine proportion of \bar{v}_{μ}/v_{μ} events with reconstructed μ^{+}/μ^{-}
- Tracker reconstruction efficiency:
 - Proportion of μ events with reconstructed tracks

$$\circ \quad \epsilon_{\text{Tracker}} = 0.929 \pm 0.010$$

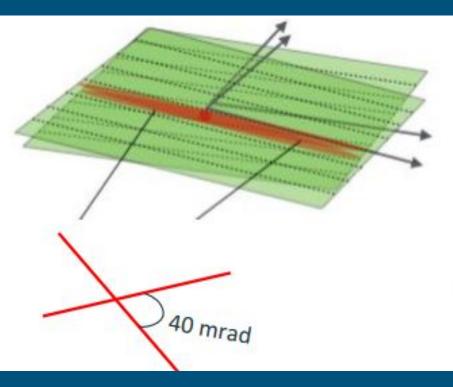
Reconstruction Algorithm Track fitting in inhomogeneous B-field ● B-field (⇒ helix) in dipole volumes only, no field (⇒ line) everywhere else

- Previous helix fitter assumes uniform global B-field
- Drastic revision of faserTracker to accomplish this

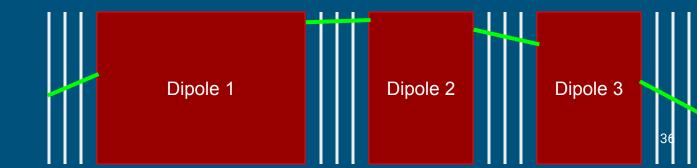


[Inhomogeneous B-field]

Reconstruction Algorithm Clusterization

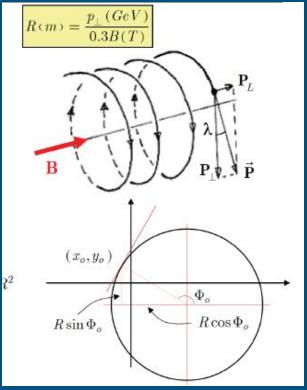

- Convert digitized SCT hits to SCT clusters
- For each strip that was hit, check if adjacent strips were hit
- For each adjacent strip that was also hit, add it to the cluster
- Hit clusters on one side of SCT are in one direction only

Reconstruction Algorithm Space point formation


[Source]

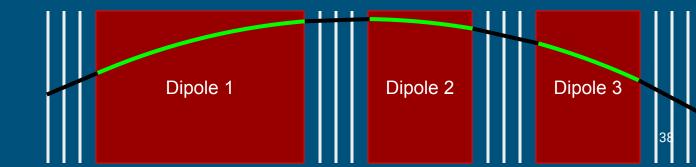
- Convert hit clusters into space points (SPs)
 - Check that there are clusters on both sides of SCT module; if so, combine them into SPs
- Strips on opposite sides are misaligned by 40 mrad
 - Two linearly independent directions
 - Two clusters intersect at SP

Reconstruction Algorithm Track Finding


- Use 3 SPs at each tracking station + IFT to build track segment
 - Segments at each station independent

Reconstruction Algorithm Helix track model

- Five fit parameters
- qR Signed helix radius
 - $\circ \quad Charge <\!\! 0 \Rightarrow qR <\!\! 0 \Rightarrow left-handed helix$
- (x_0, z_0) Transverse initial position
- Φ_0 Azimuth of center
- λ Pitch of helix


[An introduction to charged particle tracking, F. Ragusa]

Reconstruction Algorithm Track Fitting

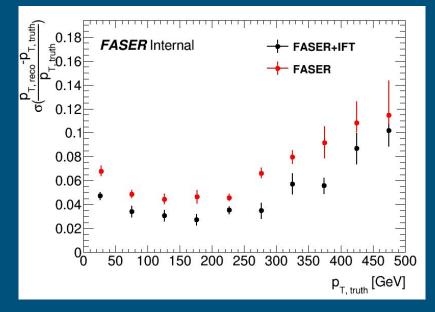
- Perform global χ^2 fitting to track segments
 - Adjust fitted track parameters to minimize χ^2
- Precision: (16 μm, 580 μm)
 - SCT module has one precision direction and misaligned front/back

$$\chi^2 = \sum_{\text{fitted points}} \frac{(x_{\text{expected}} - x_{\text{hit}})^2}{\sigma_{x_{\text{hit}}}^2} + \frac{(y_{\text{expected}} - y_{\text{hit}})^2}{\sigma_{y_{\text{hit}}}^2}$$

Reconstruction Algorithm Emulsion-IFT matching

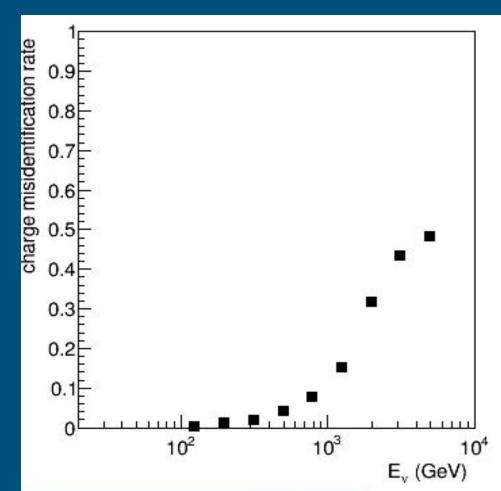
- Extrapolate reconstructed FASERv emulsion track to first layer of IFT
- If $(x_{\text{measured}}, y_{\text{measured}}) = (x_{\text{extrapolated}}, y_{\text{extrapolated}})$ within $(x_{\text{reso}}, y_{\text{reso}})$, match the tracks • Note: Reject emulsion tracks which cannot match to an IFT hit because we cannot identify μ^+/μ^-

Outline


1. Introduction

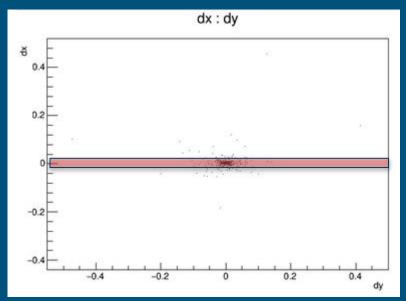
- 2. Monte Carlo simulation
- 3. Reconstruction algorithm
- 4. Combined performance
- 5. Neutrino-nucleon cross sections
 - Background
 - Systematics
 - Sensitivity
- 6. Future work

My contributions since joining FASER/FASERv (Dec 2019)


Combined Performance $p_{\rm T}$ resolution with inhomogeneous B-field

• Improved resolution at all energies with IFT

Combined Performance Charge misidentification


- Likelihood of misidentifying μ^+ (μ^-) as μ^- (μ^+)
- Charge misidentification rate *f* steadily increases with energy
 - Correct and incorrect charged tracks begin to approximate same straight line
 - In TeV range charge ID approaches random assignment
- Charge mis-ID rate gives systematic uncertainty contribution $\sigma_{chargeID}$
- Observed μ^+/μ^- dictates measurement of $\sigma(\nu N)$
 - $\circ \qquad N(\mu^{-})_{obs} = (1-f)N(\mu^{-})_{truth} + fN(\mu^{+})_{truth}$
 - $\circ \qquad \mathrm{N}(\mu^{+})_{\mathrm{obs}} = (1-f)\mathrm{N}(\mu^{+})_{\mathrm{truth}} + f\mathrm{N}(\mu^{-})_{\mathrm{truth}}$

Combined Performance Emulsion-IFT Matching Results

- Difference in extrapolated (x,y) vs measured hit (x,y) for closest match to each track
- Track is matching if (x,y) residuals are within
 + / IFT hit resolution (red band)
 - \circ (σ_{x}, σ_{y}) = (0.016 mm, 0.580 mm)
- Mu neutrinos:
 - **1017 of 1052** emulsion tracks match to the correct hit in first plane of IFT
 - $\circ \quad \epsilon_{\text{Matching}} \underline{0.967 \pm 0.009}$
- Repeat for antineutrinos:

$$\circ \quad \epsilon_{\text{Matching}} \, \underline{0.971 \pm 0.014}$$

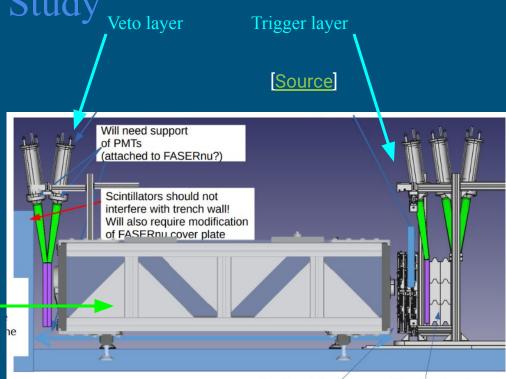
Outline

1. Introduction

- 2. Monte Carlo simulation
- 3. Reconstruction algorithm
- 4. Combined performance
- 5. Neutrino-nucleon cross sections
 - Background
 - Systematics
 - Sensitivity
- 6. Future work

My contributions since joining FASER/FASERv (Dec 2019)

Cross Section Sensitivity Study Determining cross section (part I) $\frac{N-N_{bkg}}{\sum x A \times \epsilon_{VertexID} \times \epsilon_{MuonID} \times \epsilon_{Emulsion} \times \epsilon_{Tracker} \times \epsilon_{Matching}}$

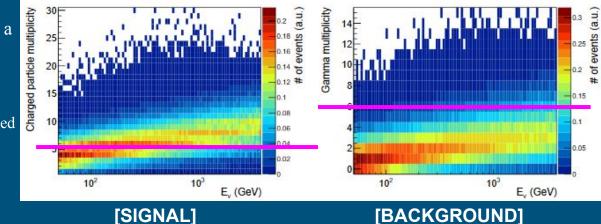

- Parameters:
 - N (events): Number of events observed in detector
 - L (luminosity): Total number of incident neutrinos per unit area (measured by ATLAS)
 - A (acceptance): Fraction of events $\geq 2\lambda_{int}$ before end of FASERv and μ^+/μ^- hitting all 12 planes
 - $\epsilon_{VertexID}$ (vertex ID): Fraction of v vertices with ≥ 5 charged tracks
 - Energy-dependent
 - $\epsilon_{\text{Emulsion}}, \epsilon_{\text{Tracker}}$ (tracking): Fraction of events with ≥ 1 reconstructed muon track
 - \circ $\epsilon_{Matching}$ (matching): Fraction of emulsion tracks matching to signal hit in first layer of IFT

Cross Section Sensitivity Study v_{μ} CC signal vs background

- <u>Signal:</u> v_{μ} CC event, producing μ and other charged hadrons
- <u>Hadronic background:</u>
 - \circ Neutral hadron events with highest-momentum particle (HMP) misidentified as μ
- <u>Muon background:</u>
 - $\circ \quad \mu \ propagating through FASERv and entering detector$
- How do we distinguish signal and background?

Cross Section Sensitivity Study Front Veto

- Veto scintillator to reduce background
- Muons will interact with scintillators
- Expect to remove **>99.99%** of μ background


Cross Section Sensitivity Study FASERv acceptance

- FASERv is $10.1\lambda_{int}$ long
- Require that the neutrino interact before last $2\lambda_{int}$

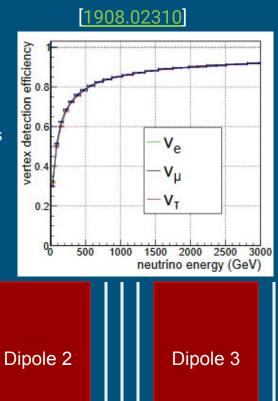
 - Last $2\lambda_{int}$ used for muon ID Note: If v_{μ} CC vertex is in last $2\lambda_{int}$ it will be rejected
- Require that the produced μ^+/μ^- enters the tracker and hits all 12 SCT planes
 - $Acc(\bar{v}) = 0.41 \pm 0.02, Acc(v) = 0.28 \pm 0.01$
 - Antineutrino + quark has different helicity from neutrino + quark, so we expect different results

Cross Section Sensitivity Study Vertex ID algorithm

1908.02310

Require at least 5 charged tracks at a vertex

- Background typically has < 5charged tracks
- Note: v CC events with < 5 charged tracks not identified

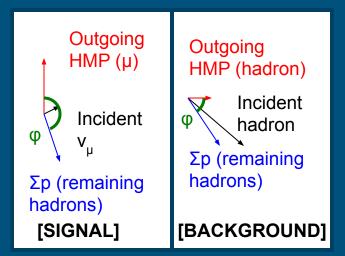

Cross Section Sensitivity Study Vertex ID efficiency

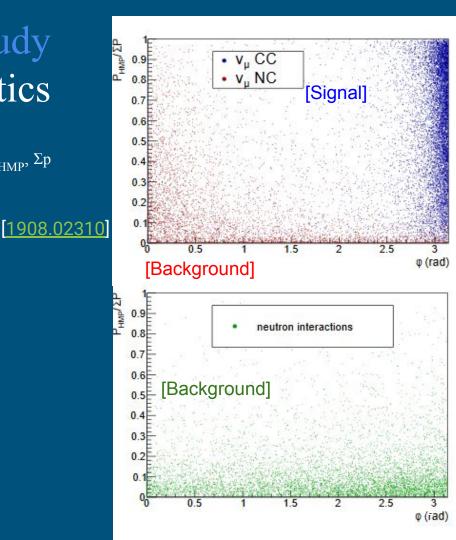
• Energy dependent

Emulsion

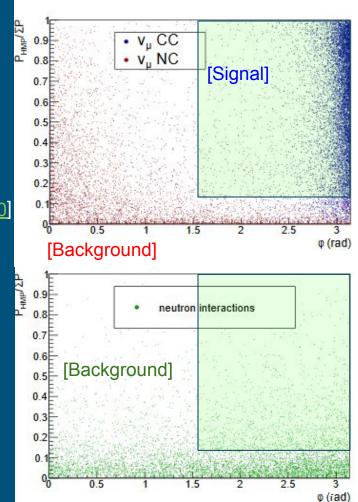
- \circ Track multiplicity of v CC events increases with energy
- Below 100 GeV, less than 50% of neutrinos have \geq 5 charged tracks

Dipole 1


Cross Section Sensitivity Study Muon ID algorithm


- Already identified vertex, now want to restrict to v_{μ} CC vertices only
- Determine which hits were registered by muons
 - Note: Hadrons can be misidentified as muons

Cross Section Sensitivity Study Signal / background kinematics


- Consider azimuth ϕ in transverse plane and momenta p_{HMP} , Σp shown below
- <u>Signal</u>: φ sharply peaked, large $p_{HMP} / \Sigma p$
- <u>Hadronic background:</u> ϕ spread out, small $p_{HMP}/\Sigma p$

Cross Section Sensitivity Study Muon ID efficiency

- For events passing vertex ID (\geq 5 charged tracks), want to separate:
 - \circ v_u CC events (signal)
 - v_{μ} NC events or hadron events with high-energy hadron misidentified as muon (background) [1908.02310]
- Apply cuts to φ and p_{HMP} (right) to reduce background
- Result: $\underline{\varepsilon}_{v\mu,CC} = 0.86$
- With these cuts, can reduce background to essentially negligible

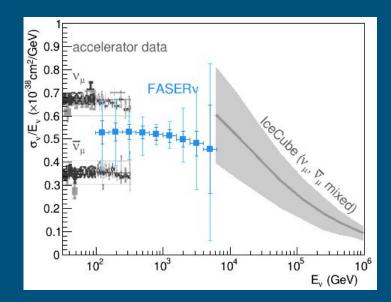
Cross Section Sensitivity Study Determining Cross Section - Summary

Cross Section =

 \mathcal{L} x A x $\boldsymbol{\epsilon}_{VertexID}$ x $\boldsymbol{\epsilon}_{MuonID}$ x $\boldsymbol{\epsilon}_{Emulsion}$ x $\boldsymbol{\epsilon}_{Tracker}$ X $\boldsymbol{\epsilon}_{Matching}$

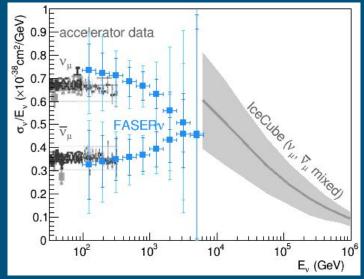
Expectation	Values for v_{μ} (Value for \overline{v}_{μ})
$N(v_{\mu})$	4452 (1366)
N _{bkg}	~0
L	$139 \text{ fb}^{-1} \pm 1.7\%$
А	$0.28 \pm 0.01 \ (0.41 \pm 0.02)$

Parameters	Value for v_{μ} (Value for \overline{v}_{μ})
$\epsilon_{ m VertexID}$	0.3 - 0.9
$\epsilon_{ ext{MuonID}}$	0.86
$\epsilon_{ m Emulsion}$	0.951 ± 0.021
$\epsilon_{_{\mathrm{Tracker}}}$	0.929 ± 0.010
$\epsilon_{_{ m Matching}}$	0.967± 0.009 (0.971 ± 0.014)


Cross Section Sensitivity Study Systematics

- Theoretical uncertainties:
 - Estimated neutrino flux (dominant source of systematic uncertainty)
 - Acceptance
- Experimental uncertainties:
 - Charge misidentification (significant above 1 TeV)
 - Misalignment of the tracker planes
 - Luminosity
 - Tracking efficiency
 - Emulsion efficiency
 - Matching efficiency

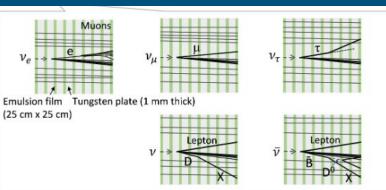
• Systematic uncertainty mainly constrained by neutrino flux and charge misID


Cross Section Sensitivity Study Sensitivity plot

• Expected v_{μ} cross section sensitivity with updated FASERv geometry (760 layers)

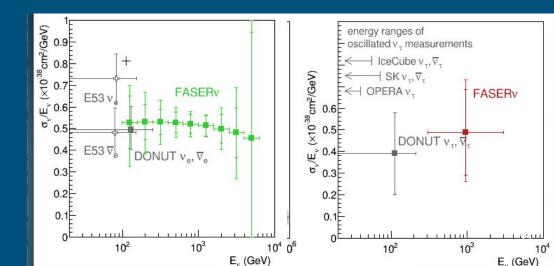
Cross Section Sensitivity Study Emulsion+IFT+Tracker results

- Can distinguish vN CC cross sections for \overline{v}_{μ} vs v_{μ} at lower energies (< 2 TeV)
- At higher energies (> 2 TeV), vN CC cross sections become indistinguishable


Outline

1. Introduction

- 2. Monte Carlo simulation
- 3. Reconstruction algorithm
- 4. Combined performance
- 5. Neutrino-nucleon cross sections
 - Background
 - Systematics
 - Sensitivity
- 6. Future work


My contributions since joining FASER/FASERv (Dec 2019)

Future Work Other capabilities of FASERv

Source

- Can also measure v_e / v_τ cross section (bottom)
 - Cannot distinguish neutrinos from antineutrinos \Rightarrow only average cross sections
- Can identify charmed/beautiful hadrons (top)
- Other physics capabilities:
 - Heavy flavour associated channels
 - Intrinsic charm
 - Sterile neutrino oscillations
 - Probes of BSM physics

Future Work FASER/FASERv timeline

- Mar 2019: FASER approved by CERN Research Board ⇐ Done
- Dec 2019: FASERv approved by CERN Research Board ⇐ Done
- Jul 2020: FASER commissioned on surface ⇐ Done
- Sep 2020: Begin installation of FASER in TI12
- Nov 2020: Commission FASER in TI12
- Jun 2021: FASERv installed in TI12
- Feb 2022: Physics data taking and analysis (LHC Run 3 02/2022-2025)
- 2023: v_{μ} , v_{e} cross sections
- 2024: v_{μ} , v_{e} -induced charm production
- 2025: v_{τ} cross section, other physics analysis

Future Work Prospective tasks for JS toward Ph. D.

- Oct 2020: Material mapping, event data model
- Nov 2020: Track finder
- Dec 2020: Emulsion reconstruction
- Jan 2021: Systematics
- Mar 2021: Thesis writing
- Apr 2021: Schedule APS talk in Sacramento
- June 2021: Final Exam

- Many big questions about neutrinos which can only be answered once we know how neutrinos interact with our detector
- FASERv is an emulsion detector which will be able to detect collider neutrinos for the first time
- Using Emulsion + IFT + Tracker, we can distinguish CC vN cross sections of muon neutrinos vs antineutrinos
- FASER has been commissioned on the surface and is currently being installed in TI12
- FASERv has been approved by the CERN Research Board and will be installed starting June 2021

References

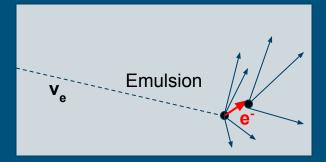
- FASER LoI: <u>https://arxiv.org/pdf/1811.10243.pdf</u>
- FASER TP: <u>https://arxiv.org/pdf/1812.09139.pdf</u>
- FASERv LoI: <u>https://arxiv.org/pdf/1908.02310.pdf</u>
- FASERv TP: <u>https://arxiv.org/pdf/2001.03073.pdf</u>
- ICHEP 2020 FASERv poster:

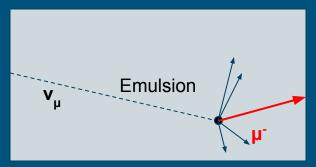
https://nusoft.fnal.gov/nova/nu2020postersession/pdf/posterPDF-249.pdf

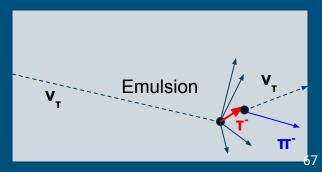
• RAL 2020 FASER seminar:

https://indico.stfc.ac.uk/event/184/attachments/332/544/FASER_RAL-Seminar_8.7. 20.pdf

Acknowledgments

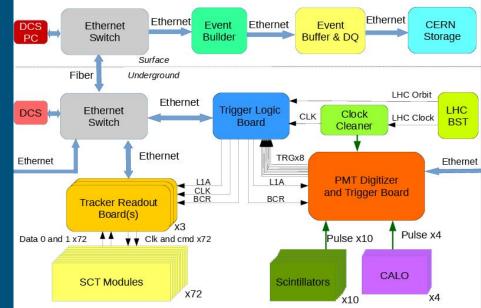

- Dave Casper / Xin Chen for their FASER / FASERv simulations
- Felix Kling, Akitaka & Tomoko Ariga, Ke Li for their support and guidance in FASER- / FASERv-related projects
- Yosuke Takubo for his mathematical modeling of track performance and matching
- Gang Zhang for his work on track fitting and performance analysis
- Jeffrey Gao for his work on emulsion reconstruction and troubleshooting


Thank you all!



Outlook v / \overline{v} features for *e*, μ , and τ

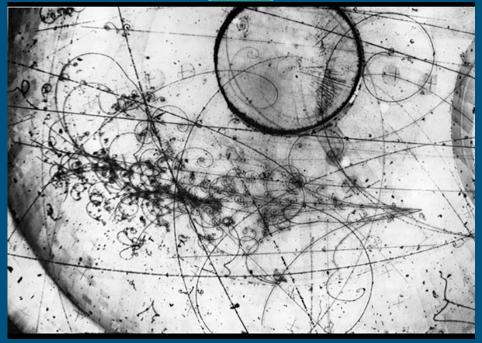
- Length of FASERv: $1000 \Rightarrow 760$ emulsion films
- $285 \Rightarrow 217$ radiation lengths (X₀)
 - Mean distance over which a high-energy e^- loses all but $\frac{1}{e}$ of its energy in EM shower (bremsstrahlung, pair production, etc.)
 - \circ X₀ ~ 3 mm
- It is unfeasible to perform electron / τ ID with FASERv
 - Vertex ID can still be done
 - If we apply same geometric acceptance, remaining length of emulsion detector is $57X_0$
 - Electron will interact again by bremsstrahlung, changing direction \Rightarrow cannot use for electron ID
 - Similar for τ which has mean flight length ~3 cm ~ $10X_0$
 - To identify e (τ) not scattering (decaying) in FASERv, we require $z > -X_0(X_0) \Rightarrow$ acceptance < 0.005 (0.05)
- We will focus on μ , v_{μ} for the rest of this talk

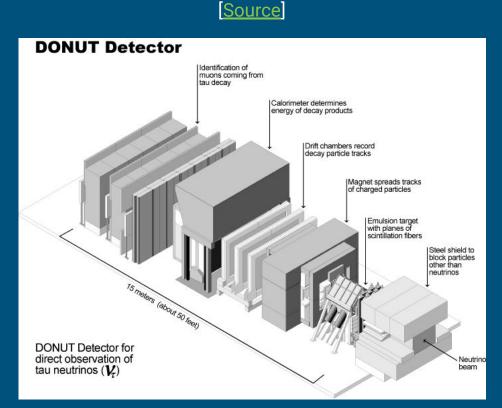


Triggering

- Plan to trigger on all particles entering FASER
- Primary source of triggers: High-energy muons passing through FASER
- Decays of LLPs in FASER
- Use OR of scintillators / calorimeter
- Veto scintillators: 360 Hz,
- Timing scintillators: 640 Hz,
- Preshower scintillators: 360 Hz,
 - Scintillator threshold set below single minimum ionizing particle
- Calorimeter (E >100GeV): < 5 Hz
 - Set to trigger on any significant EM shower

Source

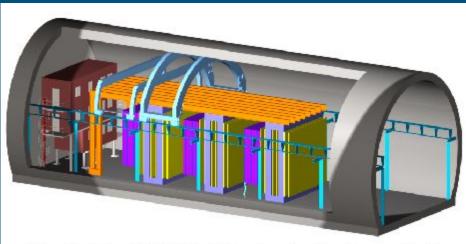

FASER Trigger/DAQ Overview


Source

- Bubble chamber experiment at Fermilab
- Detected low energy electron neutrinos and antineutrinos

DONUT

- Direct Observation of the NU Tau
- Experiment at Fermilab
- Searches for tau neutrino interactions
- 800 GeV proton beam from TeVatron
- Collides with tungsten block (beam dump)
- Produces D_s meson which decays to τv_{τ}


IceCube

- 1 km³ detector volume
- Maximum depth = 2.5 km
- 5160 digital optical modules
- DOMs in 86 boreholes
- Hexagonal grid with 125 m spacing
- Vertical separation of DOMs = 17 m
- First gigaton neutrino detector ever built
 - Detects cosmic rays (protons, neutrinos)
- DeepCore subdetector has horizontal (vertical) separation of 70 m (7 m)
 - Lowers v energy threshold to 10GeV
 - Allows study of neutrino oscillations

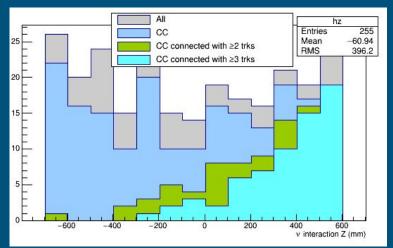
OPERA

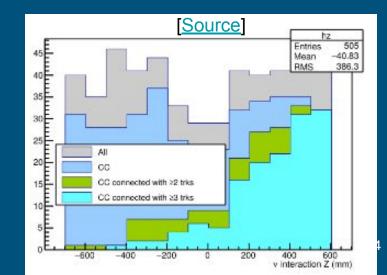
- Oscillation Project with Emulsion tRacking Apparatus
- Focused on detecting v_{τ} from v_{μ} oscillations
- Fire protons from CERN Super Proton Synchrotron (SPS) at stationary carbon target to produce pions/kaons
- Pions/kaons decay to produce μ,v_µ
- Oscillations of v_{μ} produce v_{τ}

Source

Fig. 1: The OPERA detector in the tunnel of the Gran Sasso underground laboratory.

FLUKA

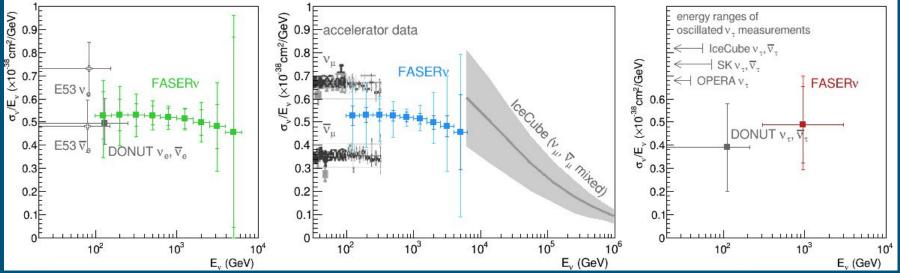

- Fully-integrated particle physics MC simulation package
- Used in high-energy experimental particle physics as well as medical physics/biology



Procedure to generate FASERnu efficiency plot

- Generate the FASERnu ROOT file using FaserNuIFTMC
 - Firing neutrinos with enhanced cross sections to record hits in FASERnu
- Copy to Windows to run virtualrec.c (FEDRA reco) and plot_hists.c
- Qualitatively consistent with Aki's results
 - Efficiency: 195 reconstructed events connected with ≥1 track / 205 CC events = 0.951

[FaserNulFTMC]



BDSIM

- Beam Delivery SIMulation
- Uses GEANT4 toolkit
- Simulates
 - Transport of particles in accelerator
 - Interaction with accelerator material

Cross Section Sensitivity Study Reproduced sensitivity plot

- Dark blue: Statistical error Light blue: Statistical+systematic error
- Statistical error higher in bins with fewer events

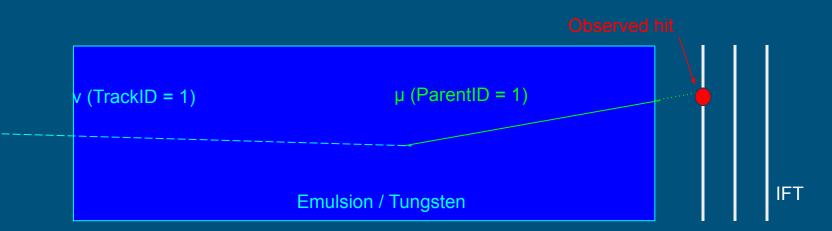
[Old geometry, 1000 planes]

To-do:

Neutrion:

- Denominator distribution of incoming particle: Energy, Eta, Theta
- Numerator distribution 1: after accepted by Emulsion
- Numerator distribution 2: after accepted by Tracker

Anti-Neutrino:


- Denominator distribution of incoming particle: Energy, Eta, Theta
- Numerator distribution 1: after accepted by Emulsion
- Numerator distribution 2: after accepted by Tracker

Cross Section Sensitivity Study Sensitivity

- How well can we distinguish neutrinos from antineutrinos?
 - Depends on how well we can distinguish oppositely charged leptons
- There has been a preliminary study using mathematical helices
 - Add Gaussian smearing
 - Apply shifts to tracking planes
 - Perform χ^2 track fitting to shifted, smeared hits
- We want to perform similar study using simulation
 - Use correct (inhomogeneous) B-field \Rightarrow piecewise line/helix tracker

Reconstruction Algorithm Track Matching Procedure

- Collect tracker hits and reconstruct emulsion tracks
- For each emulsion track with ParentID = 1:
 - Extrapolate to the first IFT layer
 - If $(x_{extrap}, y_{extrap}) = (x_{measured}, y_{measured})$ within (σ_x, σ_y) , match the tracks

Cross Section Sensitivity Study Determining cross section (part II) $Cross Section = \frac{N-N_{bkg}}{\mathcal{L} \times \mathbb{A} \times \epsilon_{VertexID} \times \epsilon_{Emulsion} \times \epsilon_{Tracker} \times \epsilon_{Matching}}$

- Knowing theory prediction, we can determine N (# of events)
- From N we can determine statistical uncertainty = 1/sqrt(N)
- Number of events + flux uncertainty in git repo:
 - <u>https://gitlab.cern.ch/jwspence/cross-section-sensitivity.git</u>

Cross Section Sensitivity Study Background estimate

- After applying specified cuts, estimated background = 0.83 events
- Our study is conducted with no-background assumption
 - Background will provide small systematic error contribution from false signal-background track matching

	LOI (FASER original)		
v_e , \bar{v}_e	814,456		
$ u_{\mu}$, $ar{ u}_{\mu}$	4452 , 1366		
$ u_{\tau}, \bar{\nu}_{\tau}$	15,7		

Source

	n	ñ	K_L^0	K_S^0	Λ ⁰	$\overline{\Lambda}^0$	Total
Incident muons (E >100 GeV)	6.67x10 [#]	6.67x10 ^a	6.67x10 ⁸	6.67x10 ^a	6.67x10 ^a	6.67×10 [#]	
Particles (E _n >10 GeV)	9515	4338	12190	3869	1749	1202	
Rate of events with interactions or decays	50%	51%	52%	70%	64%	66%	
Efficiency of the vertex selection (before the BDT cut)	1.4%	2.1%	2.5%	3.9%	2.8%	2.4%	
Vertex selected	68	47	157	107	32	19	
Vertex selected (normalized to 12.5 fb ⁻¹ and the fiducial volume)	1.3	0.9	3.0	2.1	0.6	0.4	8.3
After the BDT cut							0.83

EPJC (2020) 80:61