Overview of LHCb structure

Starterkit – 4 Nov 2020

Niels Tuning

Outline

- Once upon a time...
- Working Groups
 - Physics Analysis WG
 - Physics Performance WG
 - Liaisons
- Structure
- Review
- Deadlines

- 1) Sensitive to new physics
- 2) At the heart of the Standard Model

History of Flavour physics

GIM mechanism in K ⁰ →µµ	CP violation, $K_L^0 \rightarrow пп$	$B^0 \leftarrow \rightarrow B^0$ mixing
Weak Interactions with Lepton-Hadron Symmetry* S. L. GLASHOW, J. ILIOPOULOS, AND L. MAIANI† Lyman Laboratory of Physics, Harrard University, Cambridge, Massachuseits 02139 (Received 5 March 1970)	27 July 1964 evidence for the 2π decay of the k_2° meson* [†]	DESY 87-029 April 1987
We propose a model of weak interactions in which the currents are constructed out of four basic quark fields and interact with a charged massive vector boson. We show, to all orders in perturbation theory, that the leading divergences do not violate any strong-interaction symmetry and the next to the leading divergences respect all observed weak-interaction selection rules. The model features a remarkable symmetry between leptons and quarks. The extension of our model to a complete Yang-Milis theory is discussed.	J. H. Christenson, J. W. Cronin, [‡] V. L. Fitch, [‡] and R. Turlay [§] Princeton University, Princeton, New Jersey (Received 10 July 1964)	OBSERVATION OF B⁰ - B ⁰ MIXING The ARGUS Collaboration
splitting, beginning at order $G(G\Lambda^2)$, as well as con- tributions to such unobserved decay modes as $K_2 \rightarrow \mu^+ + \mu^-$, $K^+ \rightarrow \pi^+ + l + \bar{l}$, etc., involving neutral lepton	This Letter reports the results of experimental studies designed to search for the 2π decay of the	In summary, the combined evidence of the investigation of B^0 meson pairs, lepton pairs and B^0 meson-lepton events on the $\Upsilon(4S)$ leads to the conclusion that $B^0 \cdot \overline{B}^0$ mixing has been observed and is substantial. Parameters Comments
We wish to propose a simple model in which the divergences are properly ordered. Our model is founded	K_2^0 meson. Several previous experiments have	
in a quark model, but one involving four, not three, fundamental fermions; the weak interactions are medi- new quantum number C for charm.	Progress of Theoretical Physics, Vol. 49, No. 2, February 1973 CP-Violation in the Renormalizable Theory of Weak Interaction	$r > 0.09 90\% CL$ This experiment $x > 0.44$ This experiment $B^{\frac{1}{2}} f_B \approx f_x < 160 \text{ MeV}$ B meson ($\approx \text{ pion}$) decay constant
q q	Makoto KOBAYASHI and Toshihide MASKAWA Department of Physics, Kyoto University, Kyoto (Received September 1, 1972) doublet with the same charge assignment. This is because all phases of elements	$\begin{array}{ll} m_b < 5 GeV/c^2 & b\mbox{-quark mass} \\ \tau_b < 1.4 \cdot 10^{-12} s & B\mbox{ meson lifetime} \\ V_{td} < 0.018 & Kobayashi-Maskawa matrix element \end{array}$
Glashow, Iliopoulos, Maiani,	of a 3×3 unitary matrix cannot be absorbed into the phase convention of six fields. This possibility of <i>CP</i> -violation will be discussed later on.	$\begin{array}{ c c c c c } \hline m_{t} > 50 \mbox{GeV}/c^2 & t \mbox{ quark mass} \\ \hline \mbox{ARGUS Coll.} \end{array}$

Phys.Rev. D2 (1970) 1285

Christenson, Cronin, Fitch, Turlay, Phys.Rev.Lett. 13 (1964) 138 Kobayashi, Maskawa, Prog.Theor. Phys. 49 (1973) 652 ARGUS Coll. Phys.Lett.B192 (1987) 245

Flavour physics has a track record

GIM mechanism in K⁰→µµ	CP violation, $K_L^0 \rightarrow пп$	B⁰←	$\rightarrow B^0$ mixing
Weak Interactions with Lepton-Hadron Symmetry* S. L. GLASHOW, J. ILOOPULOS, AND L. MAIANI† Lyman Laboratory of Physics, Harrard University, Cambridge, Massachuseits 02139 (Received 5 March 1970) We propose a model of weak interactions in which the currents are constructed out of four basic quark fields and interact with a charged massive vector boson. We show, to all orders in perturbation theory, that the leading divergences do not violate any strong-interaction symmetry and the next to the leading divergences respect all observed weak-interaction selection rules. The model features a remarkable symmetry between leptons and quarks. The extension of our model to a complete Yang-Millis theory is discussed.	27 JULY 1964 EVIDENCE FOR THE 2π DECAY OF THE K_2° MESON* [†] J. H. Christenson, J. W. Cronin, [‡] V. L. Fitch, [‡] and R. Turlay [§] Princeton University, Princeton, New Jersey (Received 10 July 1964)	DESY 87-029 April 1987 OBSE	RVATION OF B ⁰ - B ⁰ MIXING The ARGUS Collaboration
splitting, beginning at order $G(G\Lambda^2)$, as well as con- tributions to such unobserved decay modes as $K_2 \rightarrow \mu^+ + \mu^-$, $K^+ \rightarrow \pi^+ + l + \tilde{l}$, etc., involving neutral lepton We wish to propose a simple model in which the divergences are properly ordered. Our model is founded	This Letter reports the results of experimental studies designed to search for the 2π decay of the K_2^0 meson. Several previous experiments have		of the investigation of B^0 meson pairs, lepton pairs S) leads to the conclusion that $B^0 \cdot \overline{B}^0$ mixing has Comments
in a quark model, but one involving four, not three, fundamental fermions; the weak interactions are medi- new quantum number C for charm.	Progress of Theoretical Physics, Vol. 49, No. 2, February 1973 CP-Violation in the Renormalizable Theory of Weak Interaction Makoto KOBAYASHI and Toshihide MASKAWA Department of Physics, Kyoto University, Kyoto (Received September 1, 1972) doublet with the same charge assignment. This is because all phases of elements of a 3×3 unitary matrix cannot be absorbed into the phase convention of six fields. This possibility of CP-violation will be discussed later on.	$\begin{split} r &> 0.09 \; 90\% CL \\ x &> 0.44 \\ B^{\frac{1}{2}} f_B \approx f_\pi < 160 \; MeV \\ m_b &< 5 GeV/c^2 \\ \tau_b &< 1.4 \cdot 10^{-12} s \\ V_{td} &< 0.018 \\ \eta_{QCD} &< 0.86 \\ m_t &> 50 GeV/c^2 \end{split}$	This experiment This experiment B meson (≈ pion) decay constant b-quark mass B meson lifetime Kobayashi-Maskawa matrix element QCD correction factor [17] t quark mass
<i>"…a quark model, but involving <u>four,</u> not three fundamental fermions…"</i>	" phases of elements of 3x3 unitary matrix cannot be absorbed into [] <u>six</u> fields"	$"m_t > 50 \ GeV/c^2$	t quark mass

Rare decay implied 2nd up quark **discovery" of charm? CP violation implied 3rd family: "discovery" of bottom? Mixing implied heavy quark: "discovery" of top?₅

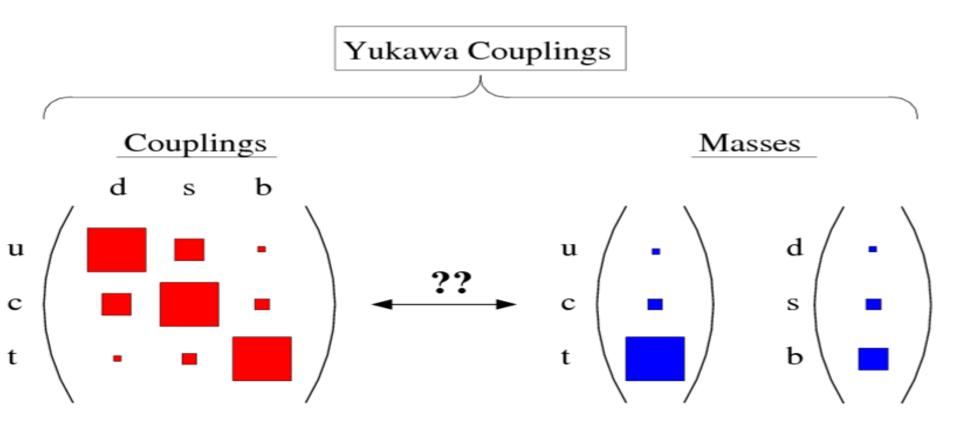
Precise flavour measurements

d

• Historical record of indirect discoveries:

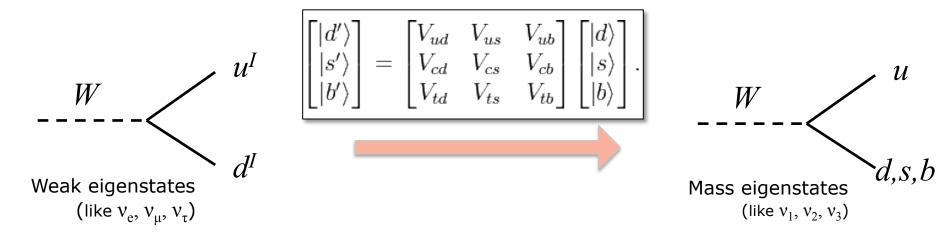
Particle		Indirect			Direct			
ν	β decay	Fermi	1932	Reactor v-CC	Cowan, Reines	1956		
W	β decay	Fermi	1932	W→ev	UA1, UA2	1983		
с	<i>K</i> ⁰ <i>→</i> μμ	GIM	1970	J/ψ	Richter, Ting	1974		
b	СРV <i>К⁰→пп</i>	CKM, 3rd gen	1964/72	Y	Ledermann	1977		
Z	v-NC	Gargamelle	1973	Z→ e+e-	UA1	1983		
t	B mixing	ARGUS	1987	$t \rightarrow Wb$	D0, CDF	1995		
н	e+e-	EW fit, LEP	2000	<i>Η→</i> 4μ/γγ	CMS, ATLAS	2012		
?	What	's next ?	?			?		
$W^{-} \qquad \stackrel{u}{\underset{\bar{\nu}_{e} \ S}{\overset{w}{\underset{W}}}} \qquad $								

Precise flavour measurements

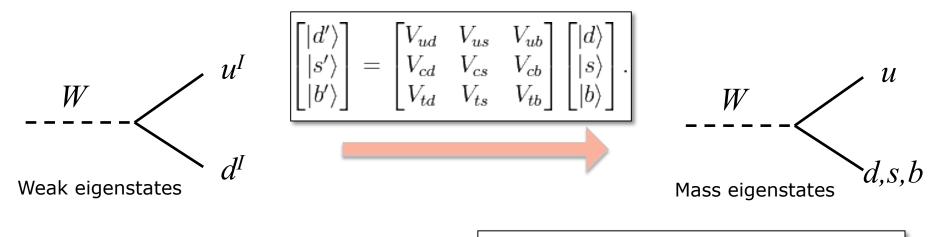

d

• Direct discoveries rightfully higher valued:

Particle		Indirect		Direct			
ν	β decay	Fermi	1932 🤣	Reactor v-CC	Cowan, Reines	1956	
W	β decay	Fermi	1932	W→ev	UA1, UA2	1983	
С	<i>К⁰ →µµ</i>	GIM	1970	J/ψ	Richter, Ting	1974	
b	СРV <i>К⁰→пп</i>	CKM, 3 rd gen	1964/	Y	Ledermann	1977	
Z	v-NC	Gargamelle	1973	$Z \rightarrow e^+e^-$	UA1	1983	
t	B mixing	ARGUS	1987	$t \rightarrow Wb$	D0, CDF	1995	
н	e+e-	EW fit, LEP	2000	$H ightarrow 4 \mu / \gamma \gamma$	CMS, ATLAS	2012	
?	What	s next ?	?			?	
$W^{-} \qquad \stackrel{u}{\underset{\bar{\nu}_{e} s}{\underset{K^{0} \bigcup c}{\overset{W}{\underset{W}{\overset{\mu}{\mu}}}}} } \qquad \stackrel{\nu}{\underset{p}{\underset{p}{\underset{w}{\overset{\mu}{\overset{\mu}{\overset{w}{\mu}}}}} } } \qquad \stackrel{\nu}{\underset{p}{\underset{w}{\overset{\omega}{\underset{w}{\overset{w}{\overset{w}{\mu}}}}} } \qquad \stackrel{\nu}{\underset{p}{\underset{w}{\overset{\omega}{\underset{w}{\overset{w}{\overset{w}{\mu}}}}} } \qquad \stackrel{e^{+} \stackrel{H}{\underset{w}{\underset{w}{\overset{\omega}{\underset{w}{\overset{w}{\overset{w}{\mu}}}}} } \qquad \stackrel{e^{+} \stackrel{H}{\underset{w}{\underset{w}{\overset{\omega}{\underset{w}{\overset{w}{\overset{w}{\mu}}}}} } \qquad \stackrel{\mu}{\underset{p}{\underset{w}{\overset{w}{\overset{w}{\overset{w}{\mu}}}} } \qquad \stackrel{\mu}{\underset{w}{\overset{w}{\underset{w}{\overset{w}{\overset{w}{\mu}}}} \qquad \stackrel{\mu}{\underset{w}{\underset{w}{\overset{w}{\overset{w}{\mu}}}} } \qquad \stackrel{\mu}{\underset{w}{\underset{w}{\overset{w}{\overset{w}{\overset{w}{\mu}}}} \qquad \stackrel{\mu}{\underset{w}{\overset{w}{\overset{w}{\overset{w}{\mu}}}} \qquad \stackrel{\mu}{\underset{w}{\overset{w}{\overset{w}{\overset{w}{\mu}}}} \qquad \stackrel{\mu}{\underset{w}{\overset{w}{\overset{w}{\overset{w}{\overset{w}{\mu}}}} \qquad \stackrel{\mu}{\underset{w}{\overset{w}{\overset{w}{\overset{w}{\overset{w}{\mu}}}} \qquad \stackrel{\mu}{\underset{w}{\overset{w}{\overset{w}{\overset{w}{\overset{w}{\mu}}}} \qquad \stackrel{\mu}{\underset{w}{\overset{w}{\overset{w}{\overset{w}{\overset{w}{\overset{w}{\mu}}}} \qquad \stackrel{\mu}{\underset{w}{\overset{w}{\overset{w}{\overset{w}{\overset{w}{\overset{w}{\overset{w}{\mu}}}}} \qquad \stackrel{\mu}{\underset{w}{\overset{w}{\overset{w}{\overset{w}{\overset{w}{\overset{w}{\overset{w}{w$							


$$L_{SM} = L_{Kinetic} + L_{Higgs} + L_{Yukawa}$$
Origin of CKM
$$-L_{Yuk} = \underbrace{Y_{ij}^{d}}_{L_{i}} \overline{d_{L}^{T}}_{L_{i}} \overline{d_{L}^{T}}_{I_{i}} \left(\begin{array}{c} \varphi^{+} \\ \varphi^{0} \end{array} \right) d_{Rj}^{T} + \dots \\ U_{q0} = \underbrace{\frac{g}{\sqrt{2}}}_{L_{i}} \overline{u_{Li}^{T}}_{L_{i}} \overline{u_{Li}^{T}}_{L_{i}} + \underbrace{\frac{g}{\sqrt{2}}}_{L_{i}} \overline{d_{Li}^{T}}_{L_{i}} \gamma^{\mu} W_{\mu}^{+} u_{Li}^{T} + \dots \\ U_{Kinetic} = \frac{g}{\sqrt{2}} \overline{u_{Li}^{T}}_{L_{i}} \gamma^{\mu} W_{\mu}^{-} d_{Li}^{T} + \underbrace{\frac{g}{\sqrt{2}}}_{L_{i}} \overline{d_{Li}^{T}}_{L_{i}} \gamma^{\mu} W_{\mu}^{+} u_{Li}^{T} + \dots \\ U_{Kinetic} = \underbrace{\frac{g}{\sqrt{2}}}_{U_{i}} \overline{u_{Li}^{T}}_{L_{i}} \gamma^{\mu} W_{\mu}^{+} u_{Li}^{T} + \dots \\ U_{Kinetic} = \underbrace{\frac{g}{\sqrt{2}}}_{U_{i}} \overline{u_{Li}^{T}}_{L_{i}} \gamma^{\mu} W_{\mu}^{+} u_{Li}^{T} + \dots \\ U_{Kinetic} = \underbrace{\frac{g}{\sqrt{2}}}_{U_{i}} \overline{u_{Li}^{T}}_{L_{i}} \gamma^{\mu} W_{\mu}^{+} u_{Li}^{T} + \dots \\ U_{Kinetic} = \underbrace{\frac{g}{\sqrt{2}}}_{U_{i}} \overline{u_{Li}^{T}}_{L_{i}} \gamma^{\mu} W_{\mu}^{+} u_{Li}^{T} + \dots \\ U_{Kinetic} = \underbrace{\frac{g}{\sqrt{2}}}_{U_{i}} \overline{u_{Li}^{T}}_{L_{i}} \gamma^{\mu} W_{\mu}^{-} u_{Li}^{T} + \dots \\ U_{Kinetic} = \underbrace{\frac{g}{\sqrt{2}}}_{U_{i}} \overline{u_{Li}^{T}}_{L_{i}} \gamma^{\mu} W_{\mu}^{-} u_{Li}^{T} + \dots \\ U_{Kinetic} = \underbrace{\frac{g}{\sqrt{2}}}_{U_{i}} \overline{u_{Li}^{T}}_{L_{i}} \gamma^{\mu} U_{\mu}^{-} u_{Li}^{T} + \dots \\ U_{Kinetic} = \underbrace{\frac{g}{\sqrt{2}}}_{U_{i}} \overline{u_{Li}^{T}}_{L_{i}} \gamma^{\mu} U_{\mu}^{-} u_{Li}^{T} + \dots \\ U_{Kinetic} = \underbrace{\frac{g}{\sqrt{2}}}_{U_{i}} \overline{u_{Li}^{T}}_{L_{i}} \gamma^{\mu} U_{\mu}^{-} u_{Li}^{T} + \dots \\ U_{Kinetic} = \underbrace{\frac{g}{\sqrt{2}}}_{U_{i}} \overline{u_{Li}^{T}}_{L_{i}} \gamma^{\mu} U_{\mu}^{-} u_{Li}^{T} + \dots \\ U_{Kinetic} = \underbrace{\frac{g}{\sqrt{2}}}_{U_{i}} \overline{u_{Li}^{T}}_{L_{i}} \gamma^{\mu} U_{\mu}^{-} u_{Li}^{T} + \dots \\ U_{Kinetic} = \underbrace{\frac{g}{\sqrt{2}}}_{U_{i}} \overline{u_{Li}^{T}}_{L_{i}} \gamma^{\mu} U_{\mu}^{-} u_{Li}^{T} + \dots \\ U_{Kinetic} = \underbrace{\frac{g}{\sqrt{2}}}_{U_{i}} \overline{u_{Li}^{T}}_{L_{i}} \gamma^{\mu} U_{\mu}^{-} u_{Li}^{T} + \dots \\ U_{Kinetic} = \underbrace{\frac{g}{\sqrt{2}}}_{U_{i}} \overline{u_{Li}^{T}}_{L_{i}} \gamma^{\mu} U_{\mu}^{-} u_{Li}^{T} + \dots \\ U_{Kinetic} = \underbrace{\frac{g}{\sqrt{2}}}_{U_{i}} \overline{u_{Li}^{T}}_{L_{i}} \gamma^{\mu} U_{\mu}^{-} u_{Li}^{T} + \dots \\ U_{Kinetic} = \underbrace{\frac{g}{\sqrt{2}}}_{U_{i}} \overline{u_{Li}^{T}}_{L_{i}} \gamma^{\mu} U_{\mu}^{-} u_{Li}^{T} + \dots \\ U_{Kinetic} = \underbrace{\frac{g}{\sqrt{2}}}_{U_{i}} \overline{u_{Li}^{T}}_{L_{i}} \gamma^{\mu} U_{\mu}^{-} u_{Li}^{T} + \dots \\ U_{Kineti$$

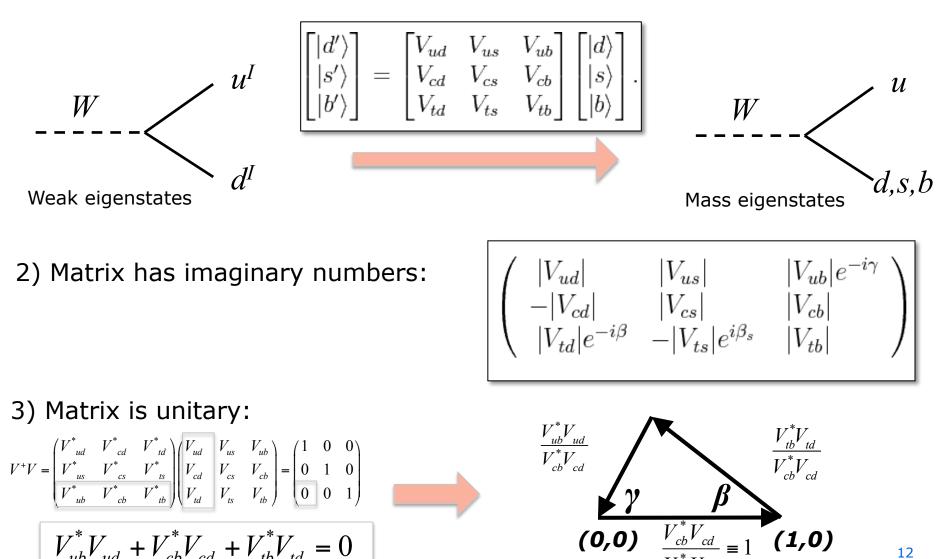
What's going on??

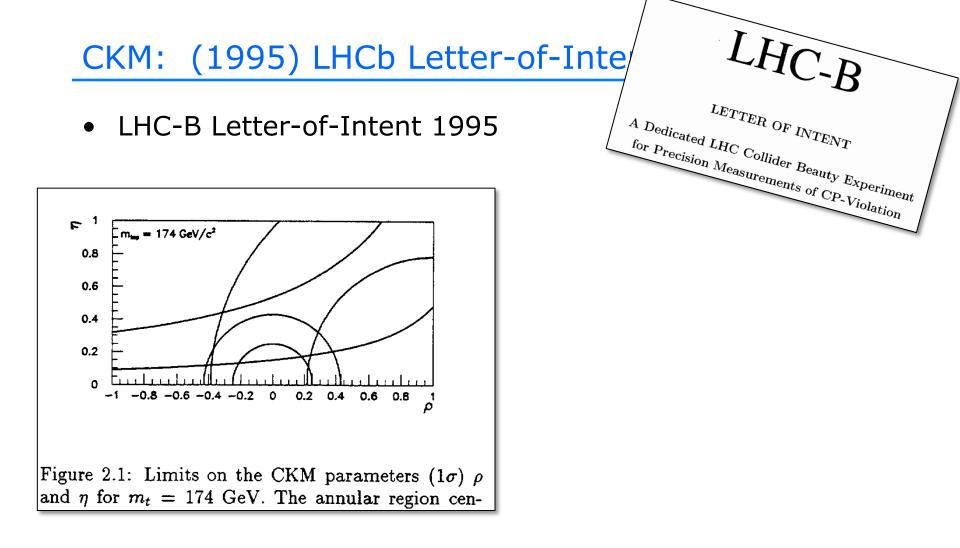

(CKM: a quick reminder…)

1) Matrix to transform weak- and mass-eigenstates:

(CKM: a quick reminder…)

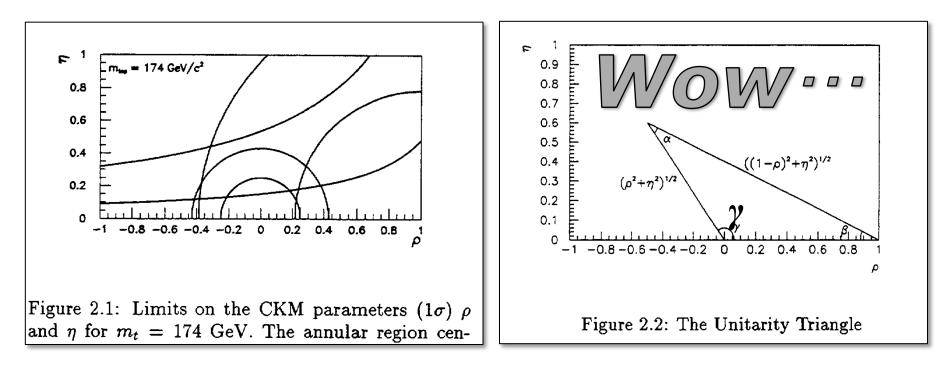
1) Matrix to transform weak- and mass-eigenstates:

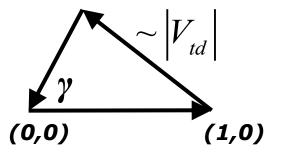


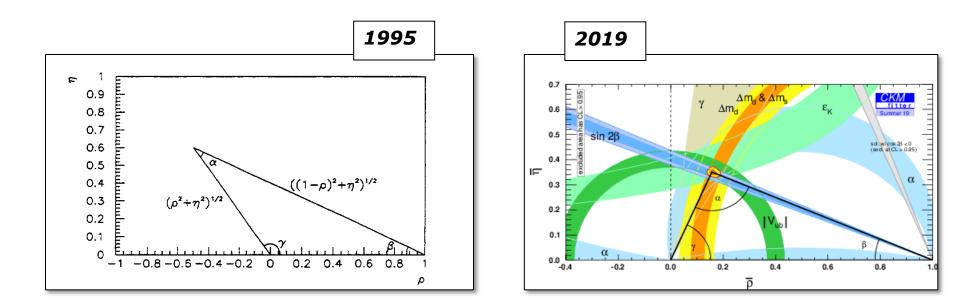

2) Matrix has imaginary numbers:

$$\begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}|e^{-i\beta} & -|V_{ts}|e^{i\beta_s} & |V_{tb}| \end{pmatrix}$$

(CKM: a quick reminder...)


1) Matrix to transform weak- and mass-eigenstates:




CKM: (1995) LHCb Letter-of-Intent ····

• Letter-of-Intent 1995

• All consistent?

Outline

- Once upon a time...
- Working Groups
 - Physics Analysis WG
 - Physics Performance WG
 - Liaisons
- Structure
- Review
- Deadlines

Organisation: LHCb

Collaboration Board

Important decisions are made by the Collaboration Board, in which each collaborating institute has one representative.

Click here for the previous Collaboration Board meetings

- Collaboration Board
 - Management
 - OPG, TB, PPG

. . .

» ...

LHCh Ma	nagement
	ingeniene
Spokesperson: Chris Parkes	E
Deputy Spokesperson: Matteo Palutan	
Technical Coordinator: Rolf Lindner	
Deputy Technical Coordinator & GLIMOS: Eric Thomas	
Resources Coordinator: Carmelo D'Ambrosio	

Operation Pla	anning Group	Technic	al Board	Physics Pla	anning Group
Operations Coordinator	Silvia Gambetta	Technical Board Chair	Rolf Lindner	Physics Coordinator	Niels Tuning
Deputy Operations Coordinator	Francesco Polci				Marco Pappagallo
Spokesperson	Chris Parkes	Spokesperson	Chris Parkes	Spokesperson	Chris Parkes
Deputy Spokesperson	Matteo Palutan	Deputy Spokesperson	Matteo Palutan	Deputy Spokesperson	Matteo Palutan
Commissioning Coordinator	Federico Alessio	Resource Coordinator	Carmelo D'Ambrosio	CB Chair	Val Gibson
Physics Coordinator	Niels Tuning	Deputy TL & LEXGLIMOS	Eric Thomas	RTA	Vladimir Gligorov
LHC Radiation & Safety Coordinator	Gloria Corti	Operation Coordinator	Silvia Gambetta	Computing PL	Concezio Bozzi
Technical Coordinator	Rolf Lindner	Electronics Coordinators			Silvia Gambetta
Online	Niko Neufeld	Physics Coordinator	Niels Tuning	EB Chair	Franz Muheim

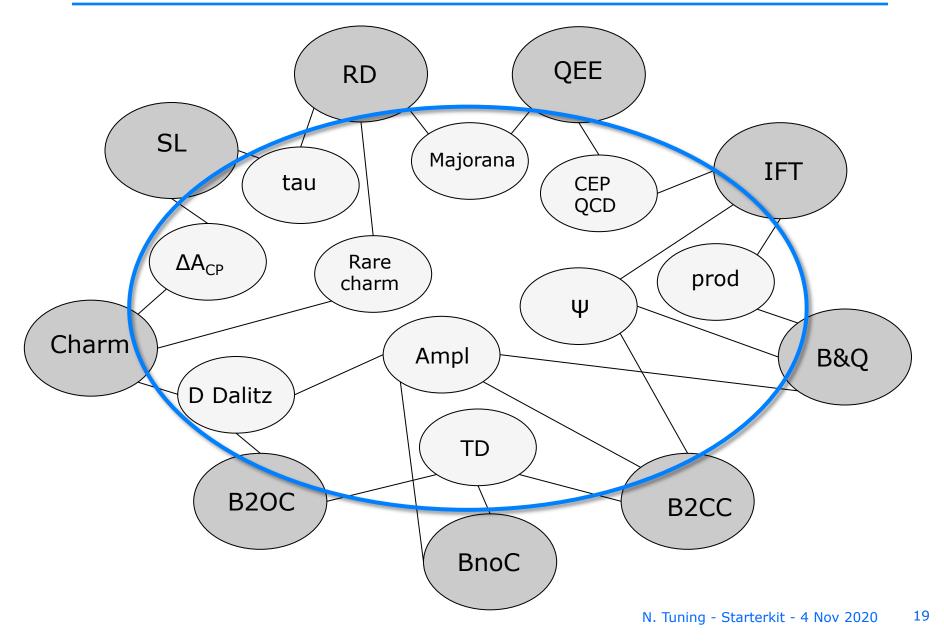
https://lhcb.web.cern.ch/lhcb_page/collaboration/organization/lhcb-conv/StructureDefault.html

Organisation: Physics

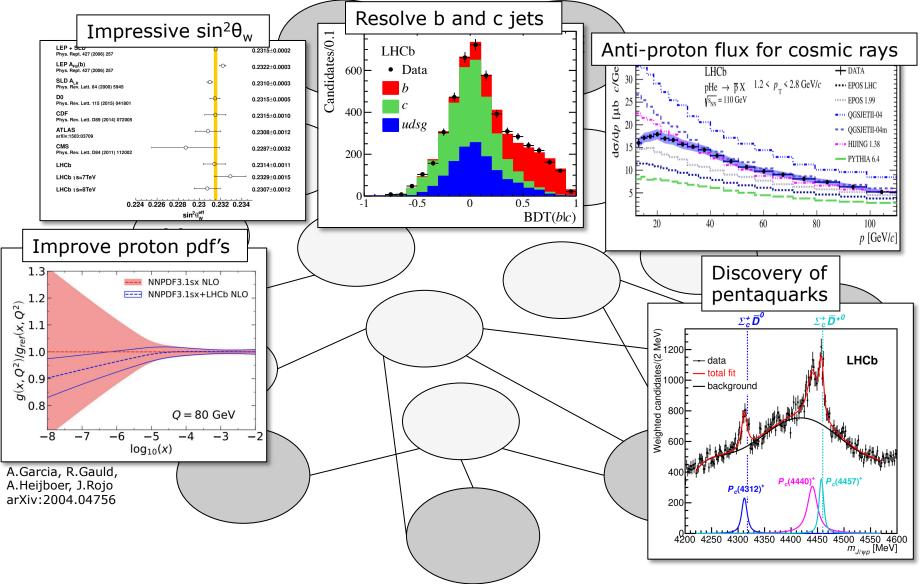
• Working Groups

LHCb Physics Organisation

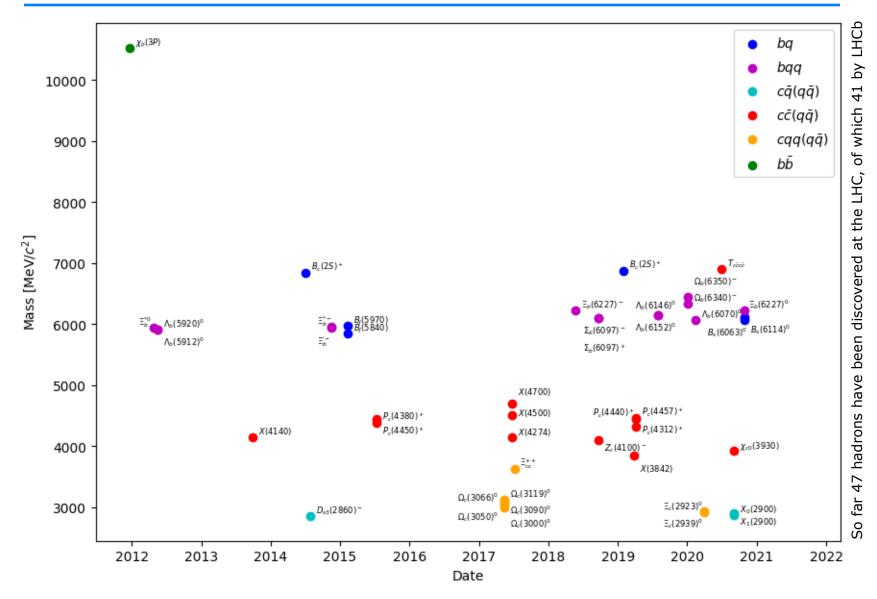
The LHCb Physics Coordinator for 2020 and 2021 is Niels Tuning with deputy Marco Pappagallo and should be contacted using Incb-physic


The physics output of LHCb is discussed by the Physics Planning Group (PPG), which is chaired by the Physics Coordinator. The members Physics Coordinator. The membership outlined in the image below was ratified by the Collaboration Board on 27 September 2011 gr (see a

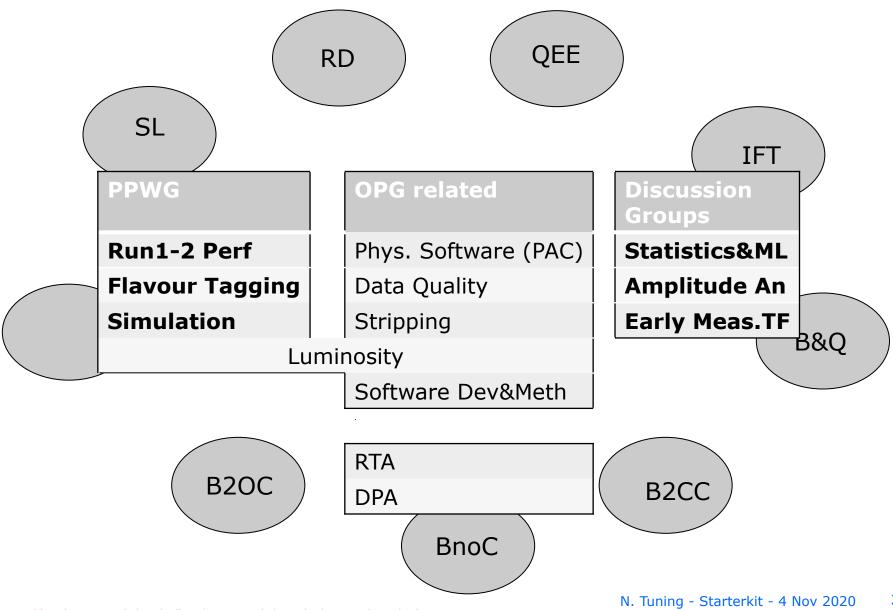
More details of the roles of some of the positions represented in the PPG can be found on the LHCbPhysicsOrganisation Twiki page. Conta


The current (*) conveners of the Working Groups are given in the table below. More details on the physics topics covered by each Working

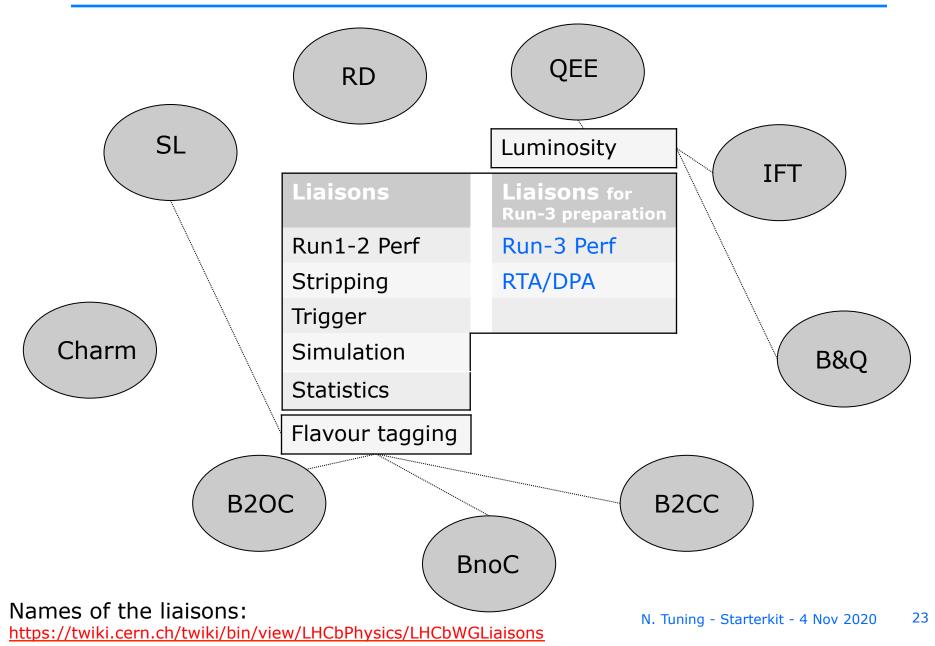
Physics Analysis Working Groups	
QCD, Electroweak and Exotica	Olli Lupton, Carlos Vazquez Sierra
B hadrons and Quarkonia	Ivan Polyakov, Jibo He
Charm physics	Mark Williams, Michael Morello
Rare decays	Flavio Archilli, Paula Alvarez Cartelle
B decays to Charmonia	Sevda Esen, Diego Martinez Santos
B decays to Open Charm	Agnieszka Dziurda, Nathan Jurik
Charmless b-hadron decays	Jeremy Dalseno, Roberta Cardinale
Semileptonic decays	Michel De Cian, Marcello Rotondo
lons and Fixed Target	Yanxi Zhang, Benjamin Audurier
Physics Performance Working Groups	
Run1-2 performance (covering Tracking, Particle identification and CALO Objects)	Michael Alexander, Vitalii Lisovskyi
Flavour tagging	Daniel O'Hanlon, Veronika Georgieva Chobanova
Luminosity	Pasquale Di Nezza, Vladik Balagura
Simulation Group	Michal Kreps, Dominik Mueller, Adam Davis
Other groups and fora	
Stripping	Nicole Skidmore, Alison Tully
Statistics	Hans Dembinski, Matthew Kenzie
Amplitude Analysis	Jonas Rademacker, Biplab Dey
Early Measurements Task Force (Run3)	Eva Gersabeck
(*) Last updated 31 Jan, 2020.	


Physics Analysis WG Landscape: lots of overlap

Physics Analysis WG Landscape: more than b!



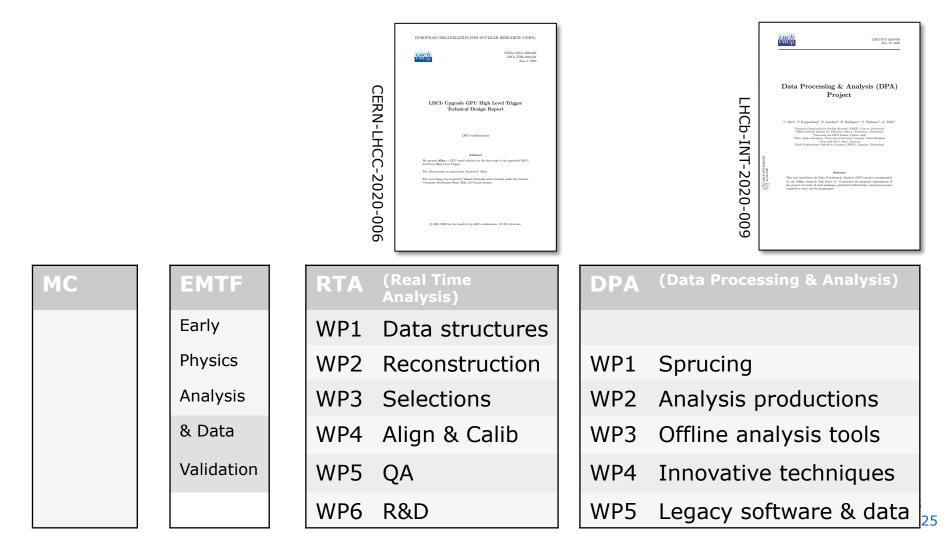
New hadrons discovered...


https://www.nikhef.nl/~pkoppenb/particles.html

Physics Performance WGs

https://twiki.cern.ch/twiki/bin/viewauth/LHCbPhysics/LHCbPhysics

Liaisons


Preparing for run-3: Liaisons

- Liaisons to contribute to run-3
 - 1) RTA/DPA (help implementations, relevant to WG)
 - 2) RTA/EMTF (run-3 performance, ensure variables relevant to WG are monitored)

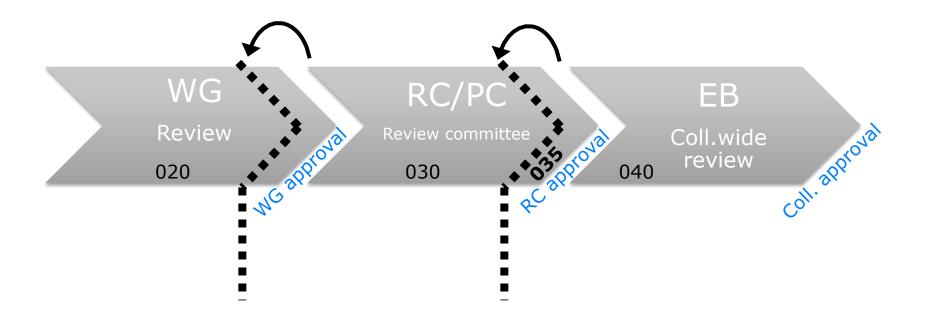
МС	EMTF		RTA	(Real Time Analysis)	DPA	(Data Processing & Analysis)
	Early		WP1	Data structures		
	Physics		WP2	Reconstruction	WP1	Sprucing
	Analysis	1)	WP3	Selections	WP2	Analysis productions
Simulation	Data	2)	WP4	Align & Calib	WP3	Offline analysis tools
Validation	Validation		WP5	QA	WP4	Innovative techniques
			WP6	R&D	WP5	Legacy software & data

Preparing for run-3

- RTA/DPA/EMTF/Simulation structure exists
- Data validation is more important than ever



- Review procedure widely appreciated by the collaboration!
 - (even though it can be lengthy at times...)


Review

• Review by RC is thorough!

Review procedure

- We try to help the process from WG to EB:
 - Assign review committee prior to WG approval
 - Assign EB reviewer prior to RC approval

- Paraphrasing EB chair Franz Muheim:
 - > "Be aware that conferences come and go, but papers are there to stay "
 - > Or: Quality is leading, Milestones are subleading

Analysis status

• Can be followed from webpages:

020-RC requested 030-Under review 040-Waiting 1st draft 050-1st collaboration review 060-Waiting 2nd draft 070-EB reading 080-Waiting 3rd draft 090-2nd collaboration review 100-Waiting for submission 110-Submitted to journal 120-Approved by journal 130-Done 140-Retired

Analyses belonging to B2OC

Status	ID	Contacts	Title	Details
020-RC requested	B2OC-Omegab2XicKpi-001	Mikhail Mikhasenko, Sara Mitchell, Marco Pappagallo	Exclusive observation of excited Ω_c^0 baryons in the Ω_b^- decays and test of spin hypotheses	more
020-RC requested	B2OC-Dms-Run2-001	Alessandro Bertolin, Agnieszka Dziurda, Kevin Heinicke, Michele Veronesi	Precision measurement of the $B_s^0 - \bar{B}_s^0$ oscillation frequency with the $B_0^s \to D_s^- \pi^+$ decays	more
020-RC requested	B2OC-Bd2DstDsst-001	Donal Hill, Malcolm John	Angular analysis of $B^0 \to D^{*-}D_s^{*+}$ decays using Run 2 data	more
030-Under review	B2OC- Bu2DstDspiAmAn-001	Anton Poluektov, Raul Rabadan	Amplitude Analysis of $B^+ \rightarrow D^{*-}(2010)D_s^+\pi^+$	more
030-Under review	B2OC-ADSwithD2hhpi0- run2-001	Colm Murphy, Malcolm John, Donal Hill	GLW and ADS analysis of $B^{\pm} \rightarrow D(hh\pi^0)h^{\pm}$	more
050-1st collaboration review	PAPER-2020-037	Philipp Ibis, Antje Moedden, Margarete Schellenberg	Observation of the decay $B_s^0 \to D^{*\pm} D^{\mp}$ and measurement of its branching fraction	more
050-1st collaboration review	PAPER-2020-036	Donal Hill, Malcolm John	Measurement of CP observables in $B^{\pm} \to D^{(*)}K^{\pm}$ and $B^{\pm} \to D^{(*)}\pi^{\pm}$ decays using two- body <i>D</i> final states	more
050-1st collaboration review	CONF-2020-003	Matt Kenzie, Mark Whitehead	Update of the LHCb combination of the CKM angle γ	more
070-EB reading	PAPER-2020-034	Chen Chen, Liming Zhang, Tim Gershon	Observation of a new excited D_s^+ state in $B^0 \to D^+ D^- K^+ \pi^-$ decays	more
070-EB reading	PAPER-2020-030	Phillipe d'Argent, Eva Gersabeck, Matthieu Kecke	Measurement of the CKM angle γ using $B_s \rightarrow D_s^{\pm} K^{\mp} \pi^{\pm} \pi^{\pm}$ decays	more
090-2nd collaboration review	PAPER-2020-021	Jordy Butter, Sevda Esen, Niels Tuning	Measurement of the branching fraction of the $B^0 \rightarrow D_s^+ \pi^-$ decay	more
100-Waiting for submission	PAPER-2020-019	Mikkel Bjorn, Sneha Malde	Measurement of the CKM angle γ in $B^{\pm} \to DK^{\pm}$ and $B^{\pm} \to D\pi^{\pm}$ decays with $D \to K_{\rm S} h^+ h^-$	more
110-Submitted to journal	PAPER-2020-025	Daniel Johnson, Tim Gershon, Mike Williams	Amplitude analysis of the $B^+ \rightarrow D^+ D^- K^+$ decay	more
110-Submitted to journal	PAPER-2020-024	Daniel Johnson, Tim Gershon, Mike Williams	A model-independent study of resonant structure in $B^+ \rightarrow D^+ D^- K^+$ decays	more
110-Submitted to journal	PAPER-2020-006	Pavol Stefko, Daniel Johnson, Fred Blanc, Tatsuya Nakada	Measurement of the branching fractions for $B^+ \to D^{*+}D^-K^+$, $B^+ \to D^{*-}D^+K^+$, and $B^0 \to D^{*-}D^0K^+$ decays	more

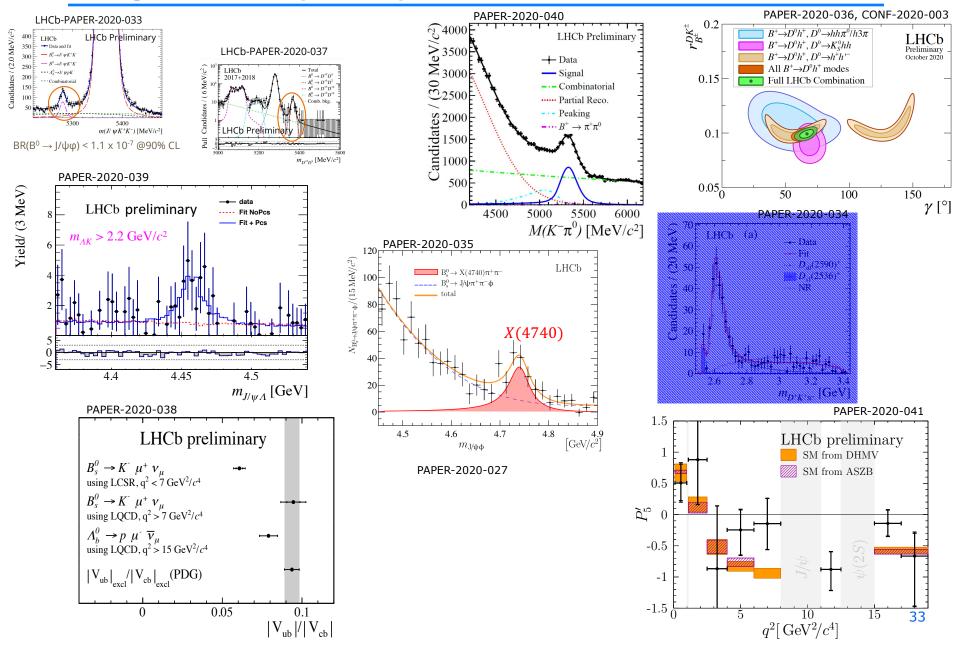
Analysis status

Status	050-1st collaboration review
Paper	PAPER-2020-041
Title	Angular analysis of the $B^+ \to K^{*+} \mu^+ \mu^-$ decay
Can be shown in Conference?	Yes (as of 28 Oct 2020)
Working group	RD
Contacts	Martino Borsato, Michel De Cian, David Gerick
Referee chair	Mitesh Patel
Referee(s)	Mikhail Mikhasenko
EB reviewer	John Walsh
EB readers	Sergey Barsuk, Jolanta Brodzicka
Institutes	Barcelona, Spain, ITEP, Moscow, Russia, Bologna, Italy, Zurich, Switzerland, Dublin, Ireland, Ferrara, Italy,
Review e-group	lhcb-review-RD-Bu2KstarMuMuAngular (archives)
Paper e-group	<u>lhcb-paper-2020-041-reviewers (archives)</u>
EP number	
ANA-number	<u>ANA-2018-022</u>
Twiki	https://twiki.cern.ch/twiki/bin/viewauth/LHCbPhysics/Bu2KstarMuMuAngularAnalysis
Authors	LHCb
arXiv	
Journal	PRL
Dataset	2011, 2012, 2015, 2016, 2017, 2018
Analysis gitlab	https://gitlab.cern.ch/LHCb-RD/ewp-Bplus2Kstmumu-AngAna
Tuples location	/eos/lhcb/wg/RD/Bu2Kstmumu
WG approval	22-Jan-2020
EB reviewer assigned	25-Sep-2020
Perminssion to go to paper/conf	13-Oct-2020
1st collaboration-wide review	28-Oct-2020 https://cds.cern.ch/record/2741581
2nd collaboration-wide review	
Final EB reading	
Collaboration approval	
Submitted	
Accepted	
Published	

Deadlines?

• Implications Workshop just ended

Conference	WG sign- off (typical)	WG sign- off (last possible) 030	Assign EB reviewer 035 (NEW,	Approval presentation for PAPER 040	Latest date for PAPER 1st circulation 050	Approval presentation for CONF	Latest date for CONF circulation	Practice talks	Start of conference
			tbd)						
				Autumn 2020	conferences				
Implications 🗗 (virtual	7 Jun 2020	7 Sep 2020	w/c 21 Sep 2020	w/c 5 Oct 2020	12 Oct 2020	w/c 12 Oct 2020	19 Oct 2020	w/c 19 Oct 2020	28 Oct 2020
confirmed)						5	Π_{σ}	4	\sim
CKM ₫ (cancelled)						3 WI	KS		30 Nov 2020
				Winter 2021	conferences			_	
Initial Stages (IFT)₫	3 Aug 2020	2 Nov 2020	w/c 16 Nov 2020	w/c 30 Nov 2020	3 Dec 2020	w/c 7 Dec 2020	11 Dec 2020	w/c 4 Jan 2021	10 Jan 2021
La Thuile 🗗	15 Oct 2020	15 Jan 2021	w/c 1 Feb 2021	w/c 15 Feb 2021	19 Feb 2021	w/c 22 Feb 2021	26 Feb 2021	w/c 1 Mar 2021	8 Mar 2021
Moriond 🗗	29 Oct 2020	29 Jan 2021	w/c 15 Feb 2021	w/c 1 Mar 2021	4 Mar 2021	w/c 8 Mar 2021	10 Mar 2021	w/c 15 Mar 2021	20 Mar 2021
	Summer 2021 conferences								
Quark Matter 🗗	17 May 2021	16 Aug 2021	w/c 30 Aug 2021	w/c 13 Sep 2021	16 Sep 2021	w/c 20 Sep 2021	22 Sep 2021	w/c 27 Sep 2021	3 Oct 2021
<u>https://twiki.</u>	cern.ch/tw	<u>/iki/bin/vie</u> v	wauth/LHC	<u>bPhysics/Upcc</u>	mingDeadlir	<u>nes</u>			


Large effort by LHCb colleagues to provide fresh input last week!

• 10 new LHCb results presented last week for the first time:

Report	Title	What?
PAPER-2020-027	Search for long-lived particles decaying to $e\mu\nu$	Exotic
PAPER-2020-035	Study of $B^0_s \rightarrow J/\psi K^+ K^- \pi^+ \pi^-$	X(4740)
PAPER-2020-033	Search for the rare decay $B^0 \rightarrow J/\psi \varphi$	OZI
PAPER-2020-034	Observation of a new excited D_s^+ state in $B^0 \rightarrow D^+ D^- K^+ \pi^-$ decays	D _{sJ} ⁺ (2590)
PAPER-2020-037	Observation of the $B^0_{\ s} \rightarrow D^{*\pm}D^{\mp}$ decay and measurement of its branching fraction	Penguin
PAPER-2020-038	Measurement of the ratios $B(B_s \rightarrow K \mu v) / B(B_s \rightarrow D_s \mu v)$ and $ V_{ub} / V_{cb} $	V _{ub}
PAPER-2020-036	Measurement of CP observables in $B^{\pm} \rightarrow D^{(*)} K^{\pm}$ and $B^{\pm} \rightarrow D^{(*)} \pi^{\pm}$ decays	γ
CONF-2020-003	Update of the LHCb gamma combination	γ
PAPER-2020-040	Measurement of direct CP violation in the decay $B^+ \rightarrow K^+ n^0$	Кп puzzle
PAPER-2020-039	Evidence of a $J/\psi\Lambda$ resonance and observation of excited Ξ^{*-} states in $\Xi_b \rightarrow J/\psi\Lambda K^-$	P _{cs} ⁰ (4459)
PAPER-2020-041	Angular analysis of the decay $B^+ \rightarrow K^{*+} \mu^+ \mu^-$	P ₅ ′

	Wed 28 Oct	Thu 29 Oct	Fri 30 Oct
Morning	Opening <u>PAPER-2020-033</u> <u>PAPER-2020-037</u> IFT	Spectroscopy <u>PAPER-2020-035</u> <u>PAPER-2020-034</u> <u>PAPER-2020-039</u>	Rare Decays PAPER-2020-041
Afternoon	CPV + mixing <u>PAPER-2020-036</u> <u>CONF-2020-003</u> <u>PAPER-2020-040</u>	Semileptonics PAPER-2020-038	QEE <u>PAPER-2020-027</u> Closing

Large effort by analysts and reviewers!

Deadlines?

• We start to worry ~now about Moriond...

Conference	WG sign- off (typical)	WG sign- off (last possible) 030	Assign EB reviewer 035 (NEW,	Approval presentation for PAPER 040	Latest date for PAPER 1st circulation 050	Approval presentation for CONF	Latest date for CONF circulation	Practice talks	Start of conference
tbd)									
Autumn 2020 conferences									
Implications (virtual confirmed)	7 Jun 2020	7 Sep 2020	w/c 21 Sep 2020	w/c 5 Oct 2020	12 Oct 2020	w/c 12 Oct 2020	19 Oct 2020	w/c 19 Oct 2020	28 Oct 2020
CKM ぱ (cancelled)									30 Nov 2020
Winter 2021 conferences									
Initial Stages (IFT) ₫	3 Aug 2020	2 Nov 2020	w/c 16 Nov 2020	w/c 30 Nov 2020	3 Dec 2020	w/c 7 Dec 2020	11 Dec 2020	w/c 4 Jan 2021	10 Jan 2021
La Thuile 🗗	15 Oct 2020	15 Jan 2021	w/c 1 Feb 2021	w/c 15 Feb 2021	19 Feb 2021	w/c 22 Feb 2021	26 Feb 2021	w/c 1 Mar 2021	8 Mar 2021
Moriond 🗗	29 Oct 2020	29 Jan 2021	w/c 15 Feb 2021	w/c 1 Mar 2021	4 Mar 2021	w/c 8 Mar 2021	10 Mar 2021	w/c 15 Mar 2021	20 Mar 2021
Summer 2021 conferences									
Quark Matter 🗗	17 May 2021	16 Aug 2021	w/c 30 Aug 2021	w/c 13 Sep 2021	16 Sep 2021	w/c 20 Sep 2021	22 Sep 2021	w/c 27 Sep 2021	3 Oct 2021
<u>https://twiki.</u>	https://twiki.cern.ch/twiki/bin/viewauth/LHCbPhysics/UpcomingDeadlines								

"Moriond" ?

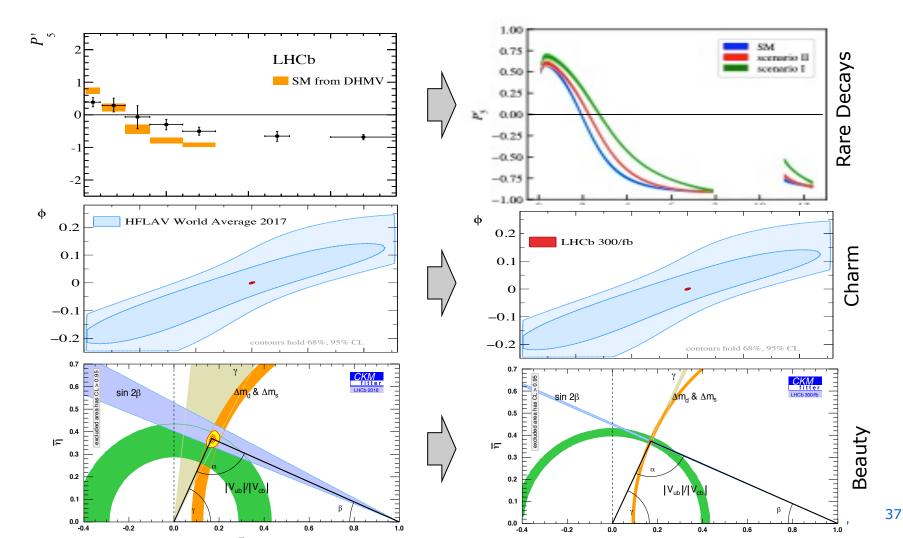
This was not a conference or a school, but a gathering ("rencontre") of minds. The name of what became a series of meetings reflects this original motivation. Held in Moriond village, the very first of the Rencontres de Moriond was a resounding success. (1965)

The 20 participants included theorists and experimenters of all ages, from France, Italy (Frascatí) and Germany (DESY).

The time was well filled with fruitful but relaxed discussions, culinary experiments, skiing, and evenings spent listening to music performed by the scientists themselves.

Gradually, the Rencontres de Moríond became known as the annual fair of the high-energy physics community.

https://cerncourier.com/a/40-great-years-of-the-rencontres-de-moriond/


"Moriond" ?

This was not a conference or a school, but a gathering ("rencontre") of minds. The name of what became a seri meetings reflects this original motivation. Held in Mori village, the very first of the Rencontres de Moriond was resounding success. (1965)	ies of ("gathering of minds" ?) iond a
The 20 participants included theorists and experimente all ages, from France, Italy (Frascati) and Germany (S	DESY). (20 ?!)
The time was well filled with fruitful but relaxed discuss culinary experiments, skiing, and evenings spent listen music performed by the scientists themselves.	síons, íng to (culinary??)
Gradually, the Rencontres de Moríond became known c annual fair of the high-energy physics community.	as the

https://cerncourier.com/a/40-great-years-of-the-rencontres-de-moriond/

Summary

- Precision measurements to scrutinize the Standard Model
- Precision measurements only way to reach very high mass scales
- Precision measurements are not yet precise enough

Thanks!

Some links

- Twiki
 - <u>https://twiki.cern.ch/twiki/bin/viewauth/LHCbPhysics/LHCbPhysics</u>
 - <u>https://twiki.cern.ch/twiki/bin/view/LHCbPhysics/LHCbPhysicsAnalysisTopicsByWorkingGroup</u>
- Constitution
 - <u>https://twiki.cern.ch/twiki/bin/view/LHCbPhysics/LHCbPhysicsOrganisation</u>
- Analysis database
 - <u>http://lhcb-wg.web.cern.ch/lhcb-WG/</u>
- EB status
 - https://lhcb-publications-stats.web.cern.ch/lhcb-publications-stats/active.html
- Upcoming conference deadlines
 - <u>https://twiki.cern.ch/twiki/bin/view/LHCbPhysics/UpcomingDeadlines</u>
- Publication rules
 - <u>https://lhcb.web.cern.ch/lhcb_page/collaboration/organization/editorial_board/PublicationProcedureNovember2011.pdf</u>
- Guidelines for high-profile analyses
 - https://indico.cern.ch/event/715188/contributions/2948291/attachments/1623378/2584231/ Guidelines high_impact_analyses_FINAL.pdf