
LHCb Data flow 🏄🏽♀
Valeriia (Lera) Lukashenko

LHCb Starterkit 2020

2

LHCb (2010-2018)

3

LHCb

Tracking

4

LHCb

Particle ID

5

LHCb

Calorimeter

6

LHCb

Muon system

LHCb Data Flow Run II (2015-2018)

7

➔ LHC: 40 MHz collision rate ~ 1TB/s of information 🤯
➔ Our resources are limited

LHCb Data flow

We want to save only the interesting stuff

We want to make decision quickly and accurately

We can use limited resources

8

LHCb Data Flow Run II. Stage 1: trigger

9

L0 trigger

HLT1/2 triggers

40MHz 12.5 kHz

Trigger stage of the data flow is also called online reconstruction.

LHCb Data Flow Run II. Stage 1: trigger

10

L0 (Level-0) hardware trigger01 Muon and Calorimeter

HLT1 (High level trigger)
software trigger02 Adding tracking information

03 Adding RICH informationHLT2 (High level trigger)
software trigger

In Moore

In detector

Moore project on gitlab

Fast trigger often means worse resolution.
Therefore, we might need extra offline reconstruction.

*

*Spoiler alert: In Run II the online reconstruction is actually precise enough to skip offline reconstruction. About it in a few slides.

https://gitlab.cern.ch/lhcb/Moore

LHCb Data Flow Run II. Stage 2: reconstruction

11

Trigger stage of the data flow is also called offline reconstruction.

tracks, clusters, etc.

Brunel on gitlab
Rec on gitlab

DST

Tape

https://gitlab.cern.ch/lhcb/Brunel
https://gitlab.cern.ch/lhcb/Rec

LHCb Data Flow Run II. Stage 3: stripping

12

Offline reconstruction is CPU expensive

Offline reconstruction produces huge DST files

An analysis user shouldn’t be asked to run the reconstruction her-/himself.

Reconstructed data can be grouped based on the signatures, i.e. can be grouped in the streams of data.

This process we call stripping.

LHCb Data Flow Run II. Stage 3: stripping

13

Output: DST or mDST

DaVinci on gitlab

DST = 150 kB/event
mDST = 50 kB/event, only candidate info

https://gitlab.cern.ch/lhcb/DaVinci

LHCb Data Flow Run II. Stage 3: Stripping

14

Stripping campaigns are done centrally.

If you need help with finding the stripping line - ask stripping liasons of your WG

● X = restripping campaign (all lines
are processed)

● Y = year
● Z = incremental stripping (a few

lines are added/fixed and
processed)

Stripping campaign:
sXrYpZ

You can find definitions of the
stripping lines with cuts etc here

http://lhcbdoc.web.cern.ch/lhcbdoc/stripping/

LHCb Data Flow Run II. Stage 4: ntuple making

15

Analysis users don’t need all available information for the analysis.

ntuple = ROOT data file DaVinci on gitlab
Phys on gitlab

https://gitlab.cern.ch/lhcb/DaVinci
https://gitlab.cern.ch/lhcb/Analysis/tree/master/Phys

And finally analysis

16

Run II shortcut: Turbo

17

This is not really true for Run II
Trigger online reconstruction is really accurate in Run II

Why not try to save CPU that is wasted on the offline reconstruction?

Run II shortcut: Turbo

18

Anything that is not a part of the signal decay is thrown away
No re-reconstruction is possible

Run II shortcut: Turbo

Turbo: save a candidate only

Turbo++: additional track information

TurboSP: you can save an additional information that you want

19

If you need help with finding the TURBO line - ask trigger liasons of your WG

LHCb Data flow
➔ LHC: 40 MHz collision rate ~ 1TB information
➔ Our resources are limited

We want to save only the interesting stuff

We want to make decision quickly and accurately

We can use limited resources

LHCb data flow Run I (2010-2012)

20

LHCb Data flow: trigger
➔ LHC: 40 MHz collision rate ~ 1TB information
➔ We could save only 5 kHz in Run I and 12.5

kHz in Run II
➔ This stage is also called “online”

reconstruction.

3 levels of the LHCb trigger:
LHCb data flow Run I (2010-2012)

L0 trigger HLT1/2 triggers

L0 (Level-0) hardware trigger01 Muon and Calorimeter

HLT1 (High level trigger)
software trigger02 Adding tracking information

03 Adding RICH informationHLT2 (High level trigger)
software trigger

In Moore

In detector

Moore project on gitlab

21

FULLSTREAM: raw banks of all
the subdetectors are saved.

https://gitlab.cern.ch/lhcb/Moore

LHCb Data flow: Reconstruction
Because you want to a fast trigger, you have to
sacrifice accuracy on the trigger stage.

This is also called “offline” reconstruction.

Next stage is reconstruction:

➔ Here define tracks, clusters, etc…
➔ Brunel on gitlab : reconstruction project
➔ Rec on gitlab : definitions of objects
➔ Output: DST files
➔ CPU expensive

LHCb data flow Run I (2010-2012)

22

https://gitlab.cern.ch/lhcb/Brunel
https://gitlab.cern.ch/lhcb/Rec

LHCb Data flow: Stripping
Initial DST files are huge. This makes it hard for
multiple users to access them when needed.
Therefore, data is splitted further in the data
streams. Output: DST or mDST files.

➔ DaVinci on gitlab : stripping and ntuple
making

➔ Stripping campaigns are done centrally

ntuple = ROOT data file

LHCb data flow Run I (2010-2012)

23DST = 150 kB/event
mDST = 50 kB/event, candidate info

sXrYpZ ● X = restripping campaign (all lines
are processed)

● Y = year
● Z = incremental stripping (a few

lines are added/fixed and
processed)

Stripping campaign:

If you need help with finding the stripping line -
ask stripping liasons of your WG

You can find definitions of the
stripping line with cuts etc here

https://gitlab.cern.ch/lhcb/DaVinci
http://lhcbdoc.web.cern.ch/lhcbdoc/stripping/

LHCb Data flow: Turbo

LHCb data flow Run I (2010-2012)

24

The process option file is called dec file.
Examples of dec files can be found here➔ Saves CPU resources

➔ You don’t need Brunel reconstruction any
more! HLT2 is accurate enough!

➔ Anything that is not a part of decay is
thrown away

➔ No re-reconstruction is possible!

If you need help with finding the TURBO
line - ask trigger liasons of your WG

Turbo: save a candidate only
Turbo++: additional track information
TurboSP: you can save an additional
information that you want.

http://lhcbdoc.web.cern.ch/lhcbdoc/decfiles/

Simulation

25

Simulation

26

Simulated Monte Carlo events pass the same reconstruction sequence as data.

Simulation
Simulation is controlled by the Gauss.

➔ Hard process generation:
◆ Pythia8
◆ SuperChic
◆ BcVegPy
◆ ...

➔ Decay: EvtGen
➔ Detector response: Geant4

➔ Detector response digitalization: Boole

27

Software Trigger (Moore)

The process option file is called dec file.
Examples of dec files can be found here

A bit more on simulations in the second-analysis-steps

If you need help with Monte Carlo - ask simulation liasons of your WG

https://gitlab.cern.ch/lhcb/Boole
http://lhcbdoc.web.cern.ch/lhcbdoc/decfiles/
https://lhcb.github.io/starterkit-lessons/second-analysis-steps/simulation.html#

LHCb Data flow: Monte Carlo
Simulated Monte Carlo events pass the same

reconstruction sequence as data.

1. Gauss: controls simulation, calls generators

like Pythia8 (SuperChic, BcVegPy,

GenXicc…), EvtGen and Geant4

2. Boole: digitalization to match the detector

signal

LHCb data flow Run I (2010-2012)

28

A bit more on simulations in the
second-analysis-steps

The process option file is called dec file.
Examples of dec files can be found here

https://gitlab.cern.ch/lhcb/Boole
https://lhcb.github.io/starterkit-lessons/second-analysis-steps/simulation.html#
http://lhcbdoc.web.cern.ch/lhcbdoc/decfiles/

What was done in Run I?📜
2010-2012

29

LHCb Data Flow Run I

30

There was no Turbo “shortcut”.
The online reconstruction resolution was worse, that in Run II.

Therefore, offline reconstruction was a “must”.

What will be done in Run III?🔮
2021-2024

31

LHCb Data Flow Run III (as planned)

32

Turbo/Turbo SP are default in Run III

Storage

Storage

Analysis
Production

Sprucing
Turbo

Full
stream

Disk

DPA

DPADPA

RTA

Tesla

Intro to LHCb software🧑🏽 💻

33

Gaudi : 5 important concepts

34

LHCb software is based on the Gaudi framework

1. Event loop : Gaudi allows to process events one by one. Setup by gaudirun.py

2. Transient Event Store: location of different objects in Gaudi. For example, best tracks can be found

in the default location: /Event/Rec/Track/Best

3. Algorithm: C++ class that allows to perform certain action with an event. Example, PVResMonitor

4. Tools: functions that are shared between the Algorithms. Example, MeasurementProvider

5. Options: configuration of Tools and Algorithms, as well as their order, in a python option file.

Example, HLT2 sequence example

Gaudi Manual
Gaudi doxygen

https://gitlab.cern.ch/gaudi/Gaudi
https://gitlab.cern.ch/lhcb/Rec/-/blob/master/Tr/TrackMonitors/src/PVResMonitor.cpp
https://gitlab.cern.ch/lhcb/Rec/-/blob/master/Tr/TrackTools/src/MeasurementProviderT.cpp
https://gitlab.cern.ch/lhcb/Moore/-/blob/master/Hlt/Hlt2Conf/options/hlt2_example.py
https://gaudi.web.cern.ch/gaudi/resources/GUG.pdf
https://gaudi.web.cern.ch/gaudi/doxygen/v30r3/index.html

DaVinci👨🎨

35

