

STARTERKIT 2020 Practice session

06.11.2020

Goals of the session

- You will use the knowledge from each of the lessons during the week
- How do you start an analysis?
- What are your first analysis steps?
- How to get the ntuple?

Outline

- 1. Creating a gitlab repository with your scripts
- 2. Dataset and Stripping
- 3. Bookkeeping
- 4. Minimal DaVinci job
- 5. Adding more variables
- 6. Preparing your ganga jobs

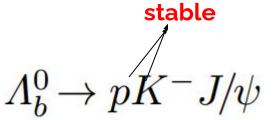
1. Gitlab repository

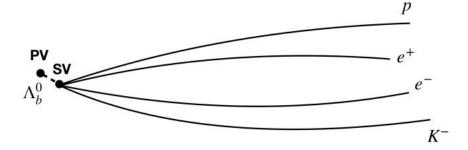
- Go to your personal gitlab: https://gitlab.cern.ch/
- When prepared, regularly commit your scipts
- Add README with info on software versions

Introduction

Today we will study

$$\Lambda_b^0 \to p K^- J/\psi$$


Introduction


Today we will study

stable
$$\Lambda_b^0 o p K^- J/\psi$$

Introduction

Today we will study

Dataset and Stripping

Go to http://lhcbdoc.web.cern.ch/lhcbdoc/stripping/

Full restrippings -> all stripping lines

Incremental restrippings -> only modified lines

Usually you need to use the latest full restripping

Search for: Bu2LLK_eeLine2

-> CombineParticles

-> GaudiSequencer/SeqMergeBu2LLK_ee2

Dataset and Stripping

Go to http://lhcbdoc.web.cern.ch/lhcbdoc/stripping/

Full restrippings -> all stripping lines

Incremental restrippings -> only modified lines

Usually you need to use the latest full restripping

Search for: Bu2LLK_eeLine2

-> CombineParticles

$$\Lambda_b^0 \to \Lambda(1520) J/\psi (\to e^+e^-)$$

-> GaudiSequencer/SeqMergeBu2LLK_ee2

Simulation

We need the event type: https://lbeventtype.web.cern.ch/

For this specific case we need 15154001

Bookkeeping: https://lhcb-portal-dirac.cern.ch/DIRAC/

Download local DSTs

Setup DaVinci

Use latest version of DaVinci:

http://gitlab.cern.ch/lhcb/DaVinci

- Follow the instructions in the "Developing the LHCb software" lesson
- Finding TES locations: Using the script from the lesson
 "Interactively exploring the DST"

Minimal DaVinci job

- Write the decay descriptor for our decay
- Write a minimal DaVinci job
- Add some TupleTools
- Preparing your ganga jobs