Impact of collimator geometric impedance on tuneshift measurements the case of **TCP.C6L7.B1**

N. Mounet, D. Amorim, N. Biancacci.

Acknowledgements: S. Antipov, G. Arduini, R. Bruce, X. Buffat, F. Carra, L. Gentini, A. Mereghetti, E. Métral, S. Redaelli, B. Salvant.

The issue

The discrepancy between model and tuneshift measurement for the horizontal, primary collimator TCP.C6L7 in beam 1, seems to have doubled between 2016 and 2018:

(a) Ratios B1H

During the WP2 meeting, *R. Bruce* mentioned that "the TCP.C6L7.B1 collimator was changed in the 2016-17 EYETS, when a new collimator with BPM buttons was installed. The hardware used in the measurements was thus not the same."

\Rightarrow what is the (theoretical) impact of this change of hardware?

Design of TCP.C6L7 after 2016-2017 EYETS

From *L. Gentini / F. Carra / S. Redaelli*: this is a specific design, "TCPP"

 \Rightarrow same BPM button design as TCSP...

... but it has RF-fingers instead of ferrite \rightarrow no high order mode at ~100 MHz (the so-called "TCTP mode").

Impact of geometric impedance

Using Sacherer formula, and equalizing some of the 2016 and 2018 parameters (1ns, 1e11 p+/b): horizontal tune shift

Conclusion

- The change of design has indeed increased the geometric impedance (essentially from tapers).
- But it cannot explain the increase of discrepancy with the impedance model as even with the new design, the impedance is largely dominated by the resistive-wall contribution (>85%).

TCPP vs. TCSP design – RF fingers

> From *L. Gentini*:

TCPP TCSP

Comparison DELPHI / Sacherer - dipolar

➤ With the MD parameters (still rescaled to 1e11 p+/b):

2016 MD, new, Nb= 0.7×10^{11} p+/b (rescaled to 10^{11} p+/b), taub=0.7 ns, dip only 2018 MD, new, Nb= 1.3×10^{11} p+/b (rescaled to 10^{11} p+/b), taub=1.1 ns, dip only 2018 MD, new, Nb= 1.3×10^{11} p+/b (rescaled to 10^{11} p+/b), taub=1.1 ns, dip only 2018 MD, new, Nb= 1.3×10^{11} p+/b (rescaled to 10^{11} p+/b), taub=0.7 ns, dip only 2018 MD, new, Nb= 1.3×10^{11} p+/b (rescaled to 10^{11} p+/b), taub=0.7 ns, dip only 2018 MD, new, Nb= 1.3×10^{11} p+/b (rescaled to 10^{11} p+/b), taub=0.7 ns, dip only 2018 MD, new, Nb= 1.3×10^{11} p+/b (rescaled to 10^{11} p+/b), taub=0.7 ns, dip only 2018 MD, new, Nb= 1.3×10^{11} p+/b (rescaled to 10^{11} p+/b), taub=0.7 ns, dip only 2018 MD, new, Nb= 1.3×10^{11} p+/b (rescaled to 10^{11} p+/b), taub=0.7 ns, dip only 2018 MD, new, Nb= 1.3×10^{11} p+/b (rescaled to 10^{11} p+/b), taub=0.7 ns, dip only 2018 MD, new, Nb= 1.3×10^{11} p+/b (rescaled to 10^{11} p+/b), taub=0.7 ns, dip only 2018 MD, new, Nb= 1.3×10^{11} p+/b (rescaled to 10^{11} p+/b), taub=0.7 ns, dip only 2018 MD, new, Nb= 1.3×10^{11} p+/b (rescaled to 10^{11} p+/b), taub=0.7 ns, dip only 2018 MD, new, Nb= 1.3×10^{11} p+/b (rescaled to 10^{11} p+/b), taub=0.7 ns, dip only 2018 MD, new, Nb= 1.3×10^{11} p+/b (rescaled to 10^{11} p+/b), taub=0.7 ns, dip only 2018 MD, new, Nb= 1.3×10^{11} p+/b (rescaled to 10^{11} p+/b), taub=0.7 ns, dip only 2018 MD, new, Nb= 1.3×10^{11} p+/b (rescaled to 10^{11} p+/b), taub=0.7 ns, dip only 2018 MD, new, Nb= 1.3×10^{11} p+/b (rescaled to 10^{11} p+/b), taub=0.7 ns, dip only 2018 MD, new, Nb= 1.3×10^{11} p+/b (rescaled to 10^{11} p+/b), taub=0.7 ns, dip only 2018 MD, new, Nb= 1.3×10^{11} p+/b (rescaled to 10^{11} p+/b), taub=0.7 ns, dip only 2018 MD, new, Nb= 1.3×10^{11} p+/b (rescaled to 10^{11} p+/b), taub=0.7 ns, dip only 2018 MD, new, Nb= 1.3×10^{11} p+/b (rescaled to 10^{11} p+/b), taub=0.7 ns, dip only 2018 MD, new, Nb=0.7 ns, dip only 2018 MD, new, Nb=0.7 ns, dip on

- DELPHI tuneshift almost independent of damper gain at low chromaticities.
- > DELPHI and Sacherer relatively close (DELPHI slightly higher).

Comparison DELPHI / Sacherer – dip+quad

➤ With the MD parameters (still rescaled to 1e11 p+/b):

2016 MD, new, Nb= 0.7×10^{11} p+/b (rescaled to 10^{11} p+/b), taub=0.7 ns, dip+quad

> Now DELPHI is slightly lower than Sacherer.

2018 MD, new, Nb= 1.3×10^{11} p+/b (rescaled to 10^{11} p+/b), taub=1.1 ns, dip+quad

Different versions of the model – dip+quad

> With the 2018 MD parameters, with various version of the imp. model:

- TCTP mode could have been included in an old version of the model (with or without a bug on the frequency sampling).
- "old_BPM" is the old implementation of the BPM button taper.
- "old" is the old model without any BPM button.
- > The TCTP mode (if included) could not explain the higher discrepancy.
- ➤ The new taper implementation has actually a lower impedance than the old one → this also cannot explain the higher discrepancy.