LIQUID XENON DETECTORS LECTURE 3

Teresa Marrodán Undagoitia marrodan@mpi-hd.mpg.de

HighRR 2020, Heidelberg

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK HEIDELBERG

Liquid xenon as detector

- Direct search for dark matter via elastic scattering
- Measurement of coherent neutrino-nucleus scattering
- Measurement of supernova and solar neutrinos
- Search for neutrinoless double-beta decay
- Particle physics calorimeter
- Applications in medical physics

Direct detection of dark matter

$$
\frac{dR}{dE}(E,t) = \frac{\rho_0}{m_{\chi} \cdot m_A} \cdot \int \mathbf{v} \cdot f(\mathbf{v},t) \cdot \frac{d\sigma}{dE}(E,\mathbf{v}) d^3 \mathbf{v}
$$

 $E_R \sim \mathcal{O}(10 \,\text{keV})$

 ρ_0 = local density of the dark matter in the Milky Way

'Standard' value: $\rho_{\rm v} \simeq 0.3$ GeV/cm³

 \bullet $f(\mathbf{v}, t) =$ WIMP velocity distribution, h*v*i ∼ 220 km/s

Parameters of interest:

- *m*^χ = WIMP mass (∼ 100 GeV)
- \bullet σ = WIMP-nucleus elastic scattering cross section (SD or SI)

Why is xenon ideal for dark matter searches?

- **Large masses and** homogeneous targets
- Low energy threshold at ∼ a few keV
- Very low intrinsic background
- 3D position reconstruction \rightarrow fiducialization
- Heavy nucleus \rightarrow high SI rate at low energies

J. Phys. G: 43 (2016) 1, arXiv:1509.08767

The last years liquid-xenon TPC competition

LUX:

- 100 kg fiducial mass (370 kg total)
- 33.5 ton·day exposure

PANDAX-II:

- 580 kg fiducial mass (1.2 t total)
- 54 ton·day exposure

XENON1T:

- 1.3 t LXe fiducial mass (3.2 t total)
- 365 ton day exposure

Result of a direct detection experiment

 \rightarrow Statistical significance of signal over expected background?

Positive signal **Q**

Region in σ_{χ} versus m_{χ}

• Zero signal

- Exclusion of a parameter region
- o Low WIMP masses: detector threshold matters
- o Minimum of the curve: depends on target nuclei
- o High WIMP masses: exposure matters $\epsilon = m \times t$

Cross section

Overview spin-independent results

Figure from P.A. Zyla et al. (PDG), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

- Best upper limits on WIMP-nucleon coupling for WIMP masses above \sim 6 GeV/ c^2 by liquid xenon detectors
- Charge-only (S2-only) searches lower further the threshold \bullet

Focussing recently on electronic recoils

Data from XENON1T, Phys. Rev. Lett. 121 (2018) 111302 & arXiv:1805.12562

- WIMP search: in the NR region with almost zero background
- ER searches: excess events above a known background level

Low energy excess in XENON1T

Excess between (1-7) keV

- \geq 285 events observed vs. 232 events expected from best-fit
- \triangleright 3.3 σ fluctuation → naive estimation (we actually use a likelihood)
- Great resonance in the community $($ > 140 citations since June)

The race

LZ :

- 7 T target mass
- **•** Assembly and commissioning

PANDAX-4T:

- 4 T target mass
- **•** Assembly and commissioning?

XENONnT:

- 6 T target mass
- **•** Commissioning

 \rightarrow A race to measure WIMPs down to $\sigma \sim 10^{-48}$ cm²

Sensitivity of upcoming liquid xenon detectors

DARWIN: the ultimate WIMP detector

• R&D and design study for a large liquid xenon dark matter detector

- \bullet TPC of \sim 2.6 m \varnothing & 2.6 m drift length
- 50 t LXe total $(40^t$ in the TPC)

DARWIN, JCAP 1611 (2016) 017

<http://darwin-observatory.org/>

- Large observatory for astroparticle physics:
- Neutrinoless double-beta decay, solar/SN neutrinos, rare processes ...

COHERENT NEUTRINO-NUCLEUS SCATTERING

Coherent ν scattering: why interesting?

What's it good for?

- \blacktriangleright To look for signatures of new physics
- \blacktriangleright To understand nuclear physics
- \blacktriangleright To characterize it as background for DM searches
- \triangleright To understand astrophysical processes
- COHERENT experiment has measured the process:

@ the Spallation Neutron Source at Oak Ridge National Laboratory

- \rightarrow with a 14.6 kg cesium iodine (CsI[Na]) in 2017
- \rightarrow with single-phase 24kg liquid argon in 2020

RED-100 experiment

Figure 2. Schematic view of the RED-100 detector: $1 -$ external vessel of the cryostat, $2 -$ internal vessel of the cryostat, $3 -$ top array of 19 Hamamatsu R11410-20 photomultipliers, $4 -$ eridded anode and electron shutter, $5 -$ drift cage with Teflon reflecting walls, $6 -$ gridded cathode, $7 -$ bottom array of 19 Hamamatsu R11410-20 photomultipliers, 8 - cold head of the bottom thermosyphon, 9 - copper housing of the bottom PMT array, $10 -$ Copper screen of the internal vessel of the cryostat, $11 -$ cold head of the side thermosyphon, 12 – copper housing of the top PMT array, 13 – flexible heat bridge. 14 – top cold head for xenon condensation, 15 – Vespel made stand supporting cold vessel inside the external vessel of the cryostat. 16 – connection for cable channel: S1 – scintillation flash. S2 – electroluminescent flash.

Dedicated experiment to measure CEνNS

- 200 kg liquid-xenon TPC assembled and operating
- Neutrinos from an industrial nuclear reactor at the Kalinin nuclear power plant

RED-100 Collaboration, JINST 15 (2020) 02, P02020 & arXiv:1910.06190

Coherent ν scattering in DM detectors

Precise measurement vs Background for WIMPs

 $\nu + Xe \rightarrow \nu + Xe$

- **o** Low threshold in DM detectors
- \rightarrow access to coherent ν scattering from solar neutrinos
	- DARWIN: 90 events/t/y ${}^{8}B-\nu$'s above ∼ 1 keV*ee*
		- \rightarrow 18 000 events in 200 t·y
		- \rightarrow High statistics measurement of the spectral shape

Limits the sensitivity to WIMP masses below few GeV/*c* 2

⁸B signal in the S2/S1 space

Figure from the LZ collaboration, see also arXiv:1802.06039

SOLAR AND SUPERNOVA NEUTRINOS

Measuring solar neutrinos at lowest energies

- **•** *pp* and ⁷Be-*ν*'s make 98% of solar neutrino flux
- **•** Borexino measures *pp*-flux with 9.5% precision
- *ν*-electron elastic scattering $ν + e^-$ → $ν + e^-$
- The recoiling electron is recorded in the LXe detector

Borexino Collaboration, Nature 562 (2018) 505

Solar neutrinos in DARWIN

- DARWIN: 7.2 ev/day in 30 t in the energy range $E = (2 - 30) \text{ keV}_{ee}$
- **•** Precision $< 1\% \rightarrow$ test non-standard ν -interactions

Supernova neutrinos

- Core-collapse supernova
- \bullet 99% of the energy is released in ν s
- S2-only signal method above a threshold of $S2 = 60$ PE

• For a $27 M_{\odot}$ SN at a distance of 10 kpc from the Earth

 \rightarrow 123/704 events in XENONnT/DARWIN, respectively

• For a detector like DARWIN: $>$ 3 σ significance even for a SN as far as the small Magellanic cloud

NEUTRINOLESS DOUBLE-BETA DECAY

Neutrinoless double beta decay

Process to test lepton flavour conservation

The standard model process The new phenomenon

Signal signature

 \bullet ¹³⁶Xe is a 0 $\nu\beta\beta$ candidate with 8.9% natural abundance (α)

$$
\blacktriangleright \ {}^{136}\text{Xe} \rightarrow {}^{136}\text{Ba} + 2e^- (+2\overline{\nu})
$$

• Peak at the spectrum endpoint $Q_{\beta\beta}({}^{136}\text{Xe}) = 2.458 \text{ MeV}$

$$
\textsf{Sensitivity:}\qquad \mathcal{S}_{0\nu} \propto \epsilon \cdot \frac{\alpha}{A} \cdot \sqrt{\frac{M \cdot t}{\Delta E \cdot b}}
$$

: detection eff., *A*: atomic mass, ∆*E*: energy resolution & *b*: background level

C

EXO-200 detector

- EXO-200 operated at an underground mine (WIPP)
- 200 kg of liquid xenon enriched to 80% in $136Xe$
- Drifted electrons detected with \bullet wire grids
- Scintillation collected with avalanche photodiodes (APDs)

EXO-200 results

No statistically significant evidence for $0\nu\beta\beta$ is observed \bullet Lower limit on the ¹³⁶Xe $0\nu\beta\beta$ half-life is $T_{1/2} > 3.5 \cdot 10^{25}$ y \bullet

Extending from keV to MeV energies in XENON1T

- Correction of pulse saturation
- **Improvements on the the identification of single/multiple scattering**

XENON1T high energy spectrum

- Energy scale employs both charge and light signals
- Search for $0\nu\beta\beta$ currently on-going

XENON1T energy resolution

- **Energy resolution optimized** $\rightarrow \sigma/E = 0.8\%$ at 2.45 MeV
- Improved towards dedicated $0\nu\beta\beta$ experiments

OTHER APPLICATIONS

MEG experiment

- MEG experiment @ PSI (Switzerland)
- Searching for the process $\mu^+ \to \bm{e}^+ + \gamma\;$ (52.8 MeV) testing lepton flavour conservation
- \bullet C-shaped 900 ℓ liquid xenon detector
- Scintillation-only detector
- $\bullet \sim 600$ 2-inch PMTs and 4092 newly developed VUV-sensitive MPPCs

Compton telescopes

Working principle of a Compton telescope

LXeGRIT gamma-ray detector

• Gamma-ray telescopes provide information on astrophysical isotopes

 \rightarrow supernova explosions or winds from massive stars

- Compton telescope image γ -interactions
	- \rightarrow reconstruction of γ -direction via Compton kinematics
- LXeGRIT: balloon flights in 1999 and 2000

Applications in medicine

Principle of 3 γ medical imaging. Figure from arXiv:1109.3300

XEMIS detector

- Application for positron emission tomography: PET scanners
	- \blacktriangleright Employed for the precise identification of the tumours position and extend
- XENON detectors are superior due to fast timing & good energy and spatial resolution
	- \blacktriangleright Good time/position resolution would allow to monitor the radioisotope uptake
- Adding Compton imaging \rightarrow improved position determination
	- $+$ less dose to patient necessary

Summary

Great technology with a wide variety of applications

- Direct search for dark matter via elastic scattering
- Measurement of coherent neutrino-nucleus scattering
- Measurement of supernova and solar neutrinos
- Search for neutrinoless double-beta decay
- Particle physics calorimeter
- Applications in medical physics

Cross sections for WIMP elastic scattering

• Spin-independent interactions: coupling to nuclear mass

$$
\sigma_{SI}=\frac{m_N^2}{4\pi(m_X+m_N)^2}\cdot[Z\cdot f_p+(A-Z)\cdot f_n]^2
$$

fp,*n*: effective couplings to p and n.

• Spin-dependent interactions: coupling to nuclear spin $\sigma_{\textit{SD}} = \frac{32}{\pi} \cdot \textit{G}_{\textit{F}} \cdot \frac{m_{\chi}^2 m_{\textit{N}}^2}{(m_{\chi} + m_{\textit{N}})^2} \cdot \frac{J_{\textit{N}}+1}{J_{\textit{N}}}$ $\frac{1}{\sqrt{N}}\cdot[a_p\langle S_p\rangle + a_n\langle S_n\rangle]^2$

 $\langle S_{p,n}\rangle$: expectation of the spin content of the p, n in the target nuclei *ap*,*n*: effective couplings to p and n.

XENON1T data from SR1

Figure from XENON1T, arXiv:1805.12562